
1

1

Distributed computing:
index building and use

2

Goals

• Do one computation faster
• Do more computations in given

time
• Tolerate failure of 1+ machines

3

Distributing computations

Ideas?

⇒ Finding results for a query?
• Building index?

4

Distributed Query Evaluation
• Assign different queries to different machines
• Break up lexicon: assign different index terms

to different machines?
– good/bad consequences?

• Break up postings lists: Assign different
documents to different machines?
– good/bad consequences?

• Goals
– Keep all machines busy
– Be able to replace badly-behaved machines

seamlessly!

5

Google query evaluation
circa 2002

• Parallelize computation
– distribute documents randomly to pieces of

index
• Pool of machines for each - choose one
• Why random?

• Load balancing and reliability
– Scheduler machines

• assign tasks to pools of machines
• monitor performance

6

Google Query Evaluation: Details
circa 2002

• Enter query -> DNS-based directed to one of
geographically distributed clusters
– Load balance & fault tolerance
– Round-trip time

• w/in cluster, query directed to 1 Google Web
Server (GWS)
– Load balance & fault tolerance

• GWS distributes query to pools of machines
– Load sharing

• Query directed to 1 machine w/in each pool
– Load balance & fault tolerance

2

7

Distributing computations

Ideas?

 Finding results for a query?
⇒ Building index?

8

Distributed Index Building

• Can easily assign different documents
to different machines

• Efficient?
• Goals

– Keep all machines busy
– Be able to replace badly-behaved

machines seamlessly!

9

Google Index Building
circa 2003

• MapReduce
– programming model
– implementation for large clusters

“for processing and generating large data sets”

• Example applications
 inverted index
• graph structure of Web docs.
• statistics on queries in given time period

10

MapReduce Programming Model
• input set: {(input keyi, valuei)| 0 ≤ i ≤ input size}
• output set: {(output keyi, valuei)| 0 ≤ i ≤ output size}
• Map: (input key, value) →

{(intermediate keyj, valuej)| 0 ≤ j ≤ Map result size}
– written by user

• system groups all Map output pairs for input set
by intermediate key

• gathers by intermediate key value
– supply to Reduce by iterator

• Reduce: (intermediate key, list of values) →
(intermediate key, {result values})

– written by user to process intermediate values

11

MapReduce for
building inverted index

• Input pair: (docID, contents of doc)
• Map: produce {(term, docID)} for each

term appearing in docID
• Input to Reduce: list of all (term, docID)

pairs for one term
• Output of Reduce: (term, sorted list of

docIDs containing that term)
– postings list!

keys 12

Diagram of
computation distribution

See Figure 1 in

MapReduce:
Simplified Data Processing on Large Clusters
J. Dean and S. Ghemawat,

Comm. of the ACM,vol. 51, no. 1 (2008), pp. 107-113.

3

13

Remarks

• Google built on large collections of inexpensive
“commodity PCs”
– always some not functioning

• Solve fault-tolerance problem in software
– redundancy & flexibility NOT special-purpose hardware

• Keep machines relative generalists
– machine becomes free ⇒

assign to any one of set of tasks

