
1

1

Building the index

2

Have seen

• Given Inverted index, how compute the
results for a query
– Merge-based algorithms

• What data structure use for inverted
index?
– Hash table
– B+ tree

3

This time

• How construct inverted index from “raw”
document collection?

– Don’t worry about getting into final index
data structure

4

Preliminary decisions
• Define “document”: level of granularity?

– Book versus Chapter of book
– Individual html files versus combined files

that composed one Web page

• Define “term”
– Include phrases?

• How determine which adjacent words -- or all?
– Stop words?

5

Pre-processing text documents
• Give each document a unique ID: docID
• Tokenize text

– Distinguish terms from punctuation, etc.
• Normalize tokens

– Stemming
• Remove endings: plurals, possessives, “ing”,

– cats -> cat; accessible -> access
• Porter’s algorithm (1980)

– Lemmatization
• Use knowledge of language forms

– am, are, is -> be
• More sophisticated than stemming

(See Intro IR Chapter 2)
6

Construction of posting lists
• Overview

– “document” now means preprocessed document
– One pass through collection of documents
– Gather postings for each document
– Reorganize for final set of lists: one for each term

• Look at algorithms when can’t fit everything in
memory
– Main cost disk page reads and writes

• Terminology: disk block = disk page

2

7

Memory- disk management

• Have buffer in main memory
– Size = B disk pages
– Read from disk to buffer, page at a time

• Disk cost = 1

– Write from buffer to disk, page at at time
• Disk cost = 1

8

Algorithm: “Block Sort-based”
1. Repeat until entire collection read:

– Read documents, building
 (term, <attributes>, doc) tuples until buffer full
– Sort tuples in buffer by term value as primary,

doc as secondary
• Tuples for one doc already together
• Use sort algorithm that keeps appearance

order for = keys: stable sorting
– Build posting lists for each unique term in buffer

• Re-writing of sorted info
– Write partial index to disk pages

2. Merge partial indexes on disk into full index

9

Merging Lists: General technique
• K sorted lists on disk to merge into one
• If K+1 <= B:

– Dedicate one buffer page for output
– Dedicate one buffer page for each list to merge

input from different lists
– Algorithm:

Fill 1 buffer page from each list on disk
Repeat until merge complete:

Merge buffer input pages to output buffer pg
When output buffer pg full, write to disk
When input buffer pg empty, refill from its list

10

• If K+1 > B:
– Dedicate one buffer page for output
– B-1 buffer page for input from different lists
– Call lists to merge level-0 lists

11

• If K+1 > B: Algorithm
j=0
Repeat until one level-j list:

{Group level-j lists into groups of B-1 lists
// K/(B-1) gps for j=0

 For each group, merge into one level-(j+1) list by:
{Fill 1 buffer page from each level-j list in group
 Repeat until level-j merge complete:

 Merge buffer input pages to output buffer pg
 When output buffer pg full,
 write to group’s level-(j+1) list on disk
 When input buffer pg empty, refill from its list

 }
 j++
} 12

Application to
“Blocked Sort-based”

• Have to merge partial indexes
• Partial posting lists for one term must

be merged
– Concatenate

• Keep documents sorted within posting list

• If postings for one document broken
across partial lists, must merge

3

13

Aside: External Sorting

• Divide list into size-B blocks of
contiguous entries

• Read each block into buffer, sort, write
out to disk

• Now have L/B sorted sub-lists
where L is size of list in disk pages

• Merge sorted sub-lists into one list
• Number of disk page read/writes?

14

What about anchor text

• Complication
• Build separate anchor text index

– strong relevance indicator
– keeps index building less complicated

15

Remarks: Index Building
• Aggregate Information on terms, e.g.

document frequency, also needs to be
computed as compute index
– store w/ dictionary

• May not actually keep every occurrence,
maybe just first k.
– Early Google did this for k=4095. Why?

• What happens if dictionary not fit in main
memory as build inverted index?

