
1

1

Finding near-duplicate
documents

2

Finding duplicate or near duplicate documents

A general paradigm:
1. Define function f capturing contents of each

document in one number
“Hash function”, “signature”, “fingerprint”

2. Create <f(doci), ID of doci> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents

as having the same f value or f values within a small
threshold

Compare: computing a similarity score on pairs of
documents

2

3

General paradigm: details
1. Define function f capturing contents of each document

in one number
“Hash function”, “signature”, “sketch”, “fingerprint”

2. Create <f(doci), ID of doci> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate

documents as having the same f value or f
values within a small threshold

– recognize exact duplicates:
• threshold = 0
• examine documents to verify duplicates

– recognize near-duplicates
Problem with “small threshold” ?

4

General paradigm: details
4. Recognize duplicate or near-duplicate documents as

having the same f value or f values within a small
threshold

– recognize exact duplicates:
• threshold = 0
• examine documents to verify duplicates

– recognize near-duplicates
Problem with “small threshold” ?

How deal with

<1, D1> <1.01, D2> <1.02, D3> …..<1.99, D100>

and threshold .01 (using ≤ threshold) ?

3

5

“Syntactic clustering”

We will look at this one example:
 Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and

Geoffrey Zweig, Syntactic Clustering of the Web
 Sixth International WWW Conference, 1997.

• “syntactic similarity” versus semantic
Sequences of words

• Finding near duplicates
• Doc = sequence of words

Word = Token
• Uses sampling
• Similarity based on shingles
• Does compare documents

6

Shingles

• A w-shingle is a contiguous subsequence
of w words

• The w-shingling of doc D, S(D, w) is the
set of unique w-shingles of D

4

7

Similarity of docs with shingles

 For fixed w, resemblance of docs A and B :
r(A, B) = |S(A) ∩ S(B)| / |S(A) U S(B)|

Jaccard coefficient

• For fixed w, containment of doc A in doc B :
C(A, B) = |S(A) ∩ S(B)| / |S(A)|

• For fixed w, resemblance distance betwn docs A and B :
D(A, B) = 1- r(A, B)

Is a metric (triangle inequality)

Note we are now comparing documents!

8

Example
A: “a rose is red a rose is white”
4-shingles:

“a rose is red”
“rose is red a”
“is red a rose”
“red a rose is”
“a rose is white”

B: “a rose is white a rose is red”
4-shingles:

“a rose is white”
“rose is white a”
“is white a rose”
“white a rose is”
“a rose is red”r(A, B) = 0.4

5

9

Sample of shingles

Want to estimate r and/or c
Do this by calculating approximation on a sample of

shingles for fixed w

• 1-to-1 map each shingle to integer in fixed, large range R
– 64-bit hash, R=[0, 264-1]

• Let Π be a random permutation from R to R
• For any S(D) define:

H(D) = Set of integer hash values corresponding to
shingles in S(D)

Π(D) = Set of permuted values in H(D)
x(Π, D) = smallest integer in Π(D)

10

Sketch of shingles

• Let Π1, …, Πm be m random permuations R → R
– text: m=20

The sketch of doc D for Π1, …, Πm is
ψ(D) = {x(Πi, D) | 1≤ i ≤ m }

doc → set shingles → set integers
 → m sets permuted intergers
 → m smallest integers: one per permutation

Sketch is a sampling

6

11

Approximation of resemblance

Theorem:
For random permutation Π:

r(A, B) = P (x(Π, A) = x(Π, B))

Estimate P (x(Π, A) = x(Π, B)) as
| ψ(A) ∩ ψ(B) | / m

recall m is # permuations

12

Correction
• The following slide is a significant correction to

version used in class.
• Version in class used the algorithm in the Broder

et. al. paper, which differs slightly from text
version followed here.

• Specifically, Broder et. al. use approximation
r(A, B) = | ψ(A) ∩ ψ(B) | / | ψ(A) ∪ ψ(B) |
with an alternate definition of a sketch ψ.
Therefore they must compute | ψ(Di) | = cti
for use in computing
 | ψ (Di) ∪ ψ (Dj) | = (cti + ctj – ctij)

7

13

Algorithm used (text’s version)
1. Calculate sketch ψ(Di) for every doc Di

2. Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection:

i. Produce list of <shingle value, docID> pairs for all shingle
values x(Πk, Di) in the sketch for each document

ii. Sort the list by shingle value
iii. Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

This not linear-time for the list of docs for one shingle value

3. Build clusters of similar/almost identical docs
Degree of similarity depends on threshold …

14

Clustering

1. Define docs to be similar if approximate
resemblance greater than a predetermined
threshold t:

ctij / m > t
2. Build graph of docs:
 edge between each pair of similar docs
3. The clusters of similar docs are the connected

components in the graph
– what type clustering?

8

15

Clustering

1. Define docs to be similar if approximate resemblance
greater than a predetermined threshold t:

ctij / m > t
2. Build graph of docs:
 edge between each pair of similar docs
3. The clusters of similar docs are the connected

components in the graph
– single link cluster similarity
 Equivalently :
• UNION-FIND (text)
• mimimum spanning tree

16

Paradigm?

• Does compare docs, so not same as paradigm
we started with, but uses ideas

• Contents of doc captured by sketch – a set of
shingle values

• Similarity of docs scored by count of common
shingle values for docs

• Don’t look at all doc pairs, look at all doc pairs
that share a shingle value

• Uses clustering by similarity threshold

9

17

More efficient : supershingles

“meta-sketch”
1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle

values
• Each original shingle value now a token
• Gives “supershingles”

3. “meta-sketch” = set of supershingles
One supershingle in common =>
 sequences of shingles in common
Documents with ≥1 supershingle in common => similar

• Each supershingle for a doc. characterizes the doc
• Sort <supershingle, docID> pairs: docs sharing a

supershingle are similar => our first paradigm

18

Pros and Cons of Supershingles

+ Faster
- Problems with small documents – not enough

shingles
- Can’t do containment

Shingles of superset that are not in subset
break up sequence of shingle values

10

19

Experiments (1996) by Broder et. al.
• 30 million HTML and text docs (150GB) from Web crawl
• 10-word shingles
• 600 million shingles (3GB)
• 40-bit shingle “fingerprints”
• Sketch using 4% shingles (variation of alg. we’ve seen)
• Used count of shingles for similarity
• Using threshold t = 50%, found

– 3.6 million clusters of 12.3 million docs
– 2.1 million clusters of identical docs – 5.3 million docs
– remaining 1.5 million clusters mixture:

“exact duplicates and similar”

