Finding near-duplicate
documents

Finding duplicate or near duplicate documents

A general paradigm:

1. Define function f capturing contents of each
document in one number
“Hash function”, “signature”, “fingerprint”

2. Create <f(doc), ID of doc> pairs
Sort the pairs

4. Recognize duplicate or near-duplicate documents
as having the same f value or f values within a small
threshold

e

Compare: computing a similarity score on pairs of
documents




General paradigm: details

1. Define function f capturing contents of each document
in one number
“Hash function”, “signature”, “sketch”, “fingerprint”
2. Create <f(doc,), ID of doc> pairs
Sort the pairs
4. Recognize duplicate or near-duplicate
documents as having the same fvalue or f
values within a small threshold
— recognize exact duplicates:
* threshold =0
* examine documents to verify duplicates
— recognize near-duplicates
Problem with “small threshold” ?

e

General paradigm: details

4. Recognize duplicate or near-duplicate documents as
having the same f value or f values within a small
threshold

— recognize exact duplicates:
threshold = 0
examine documents to verify duplicates

— recognize near-duplicates
Problem with “small threshold” ?

How deal with
<1,D,><1.01, D,> <1.02, D;> ..... <1.99, D;oo>

and threshold .01 (using < threshold) ?




“Syntactic clustering”

We will look at this one example:

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and
Geoffrey Zweig, Syntactic Clustering of the Web

Sixth International WWW Conference, 1997.

+  ‘“syntactic similarity” versus semantic
Sequences of words

*  Finding near duplicates

 Doc = sequence of words
Word = Token

* Uses sampling
*  Similarity based on shingles
* Does compare documents

Shingles

* A w-shingle is a contiguous subsequence
of w words

* The w-shingling of doc D, S(D, w) is the
set of unique w-shingles of D




Similarity of docs with shingles

> For fixed w, resemblance of docs A and B :
r(A B)=[S(A)NSB) / [S(A)US(B)|

Jaccard coefficient

* For fixed w, containment of doc A in doc B :
C(A, B)=[S(A)NS(B) 7 [S(A)

* For fixed w, resemblance distance betwn docs A and B :
D(A, B)=1-r(A, B)

Is a metric (triangle inequality)

Note we are now comparing documents!

Example
A: “arose is red a rose is white”
4-shingles:
“a rose is red”
“rose is red a” B: “a rose is white a rose is red”
“is red arose” \ 4-shingles:
“red a rose is” “a rose is white”
“a rose is white” ‘rose is white a”

“is white a rose”
“‘white a rose is”

r(A,B)=0.4 ‘a rose is red”




Sample of shingles

Want to estimate r and/or c

Do this by calculating approximation on a sample of
shingles for fixed w

* 1-to-1 map each shingle to integer in fixed, large range R
— 64-bit hash, R=[0, 2641]
* LetII be a random permutation from R to R
* For any S(D) define:
H(D) = Set of integer hash values corresponding to
shingles in S(D)
I1(D) = Set of permuted values in H(D)
x(IT, D) = smallest integer in II(D)

Sketch of shingles

« LetIl,, ..., IT,, be m random permuations R — R
— text: m=20

The sketch of doc D for I1,, ..., I1 is

Y(D) = {x(I1,, D) | 1=si=m}

m

doc — set shingles — set integers
— m sets permuted intergers
— m smallest integers: one per permutation

Sketch is a sampling 10




Approximation of resemblance

Theorem:
For random permutation IT:
r(A, B) = P ( x(IT, A) = x(IT, B) )

Estimate P ( x(IT, A) = x(IT, B) ) as
| W(A) N y(B) |/ m

recall m is # permuations

Correction

» The following slide is a significant correction to
version used in class.

* Version in class used the algorithm in the Broder
et. al. paper, which differs slightly from text
version followed here.

« Specifically, Broder et. al. use approximation
r(A, B) = | W(A) Ny(B)| / [w(A)Uw(B)|
with an alternate definition of a sketch 1.
Therefore they must compute | y(D;) | = ct;
for use in computing
| (D) U (D)) | = (et + et — cty)




Algorithm used (text’s version)

1. Calculate sketch 1(D;) for every doc D,

2. Calculate | y(D;) N y(D;)| = ct; for each non-

empty intersection:

i.  Produce list of <shingle value, doclD> pairs for all shingle
values x(I1,, D,) in the sketch for each document

ii. Sort the list by shingle value
iii. ~Produce all triples <ID(D,), ID(D,), ct, > for which ct; ;>0
This not linear-time for the list of docs for one shingle value

3. Build clusters of similar/almost identical docs
Degree of similarity depends on threshold ...

Clustering

1. Define docs to be similar if approximate
resemblance greater than a predetermined
threshold t:

cty/m >t
2. Build graph of docs:
edge between each pair of similar docs

3. The clusters of similar docs are the connected
components in the graph

— what type clustering?




Clustering

Define docs to be similar if approximate resemblance
greater than a predetermined threshold ¢:

ct;/ m>t
Build graph of docs:
edge between each pair of similar docs

The clusters of similar docs are the connected
components in the graph

— single link cluster similarity
Equivalently :

*  UNION-FIND (text)

*  mimimum spanning tree

Paradigm?

Does compare docs, so not same as paradigm
we started with, but uses ideas

Contents of doc captured by sketch — a set of
shingle values

Similarity of docs scored by count of common
shingle values for docs

Don’t look at all doc pairs, look at all doc pairs
that share a shingle value

Uses clustering by similarity threshold




More efficient : supershingles

“meta-sketch”
1. Sort shingle values of a sketch

2. Compute the shingling of the sequence of shingle
values

* Each original shingle value now a token
* Gives “supershingles”
3. “meta-sketch” = set of supershingles
One supershingle in common =>
sequences of shingles in common
Documents with 21 supershingle in common => similar

« Each supershingle for a doc. characterizes the doc

»  Sort <supershingle, docID> pairs: docs sharing a
supershingle are similar => our first paradigm 17

Pros and Cons of Supershingles

+ Faster

- Problems with small documents — not enough
shingles

- Can’t do containment

Shingles of superset that are not in subset
break up sequence of shingle values




Experiments (1996) by Broder et. al.

30 million HTML and text docs (150GB) from Web crawl
10-word shingles
600 million shingles (3GB)
40-bit shingle “fingerprints”
Sketch using 4% shingles (variation of alg. we’ve seen)
Used count of shingles for similarity
Using threshold t = 50%, found
— 3.6 million clusters of 12.3 million docs
— 2.1 million clusters of identical docs — 5.3 million docs
— remaining 1.5 million clusters mixture:
“exact duplicates and similar”

10



