
Compression of the dictionary and posting lists
Summary of class discussions 3/5/09 – 3/12/09

Remarks on Zipf’s law (covered in Section 5.1.2 of Introduction to Information
Retrieval):

General law: f i = frequency of the ith most frequent item = i-θ f1

for some constant θ. For our application, items are terms that appear in the documents of
a collection. One study gives θ of 1.5-2.0 for this application. The law is observed to
hold for other applications with varying values of θ. The text Introduction to
Information Retrieval focuses on θ = 1.

Comparative growth along regions of the curve: f i/ f j = j θ/ i θ .
Therefore, if i/j = p/q then f i/ f j = f p/ f q .

f i could refer to either the fraction of the total number of occurrences or an actual count
of occurrences. If f i is the actual count of occurrences, t is the number of distinct terms
and n is the total count of occurrences of all items, then

 f i = ——— i-θ .

 (is a well-known mathematical quantity: the order θ harmonic number of t.)

Heap’s Law:
The material covered in class is identical to Section 5.1.1 of Introduction to Information
Retrieval.

Dictionary compression:
The dictionary compression we considered in class is covered in Section 5.2 of
Introduction to Information Retrieval. I only briefly mentioned a trie-based data
structure for the dictionary. This could work, but each interior node of the trie cannot be
of a fixed size in memory because this would require allocating enough space for the
maximum possible fanout. The resulting data structure would waste too much space.
Both the “dictionary-as-a-string” representation of Section 5.2.1 and a compact trie
representation would require much shifting of data on an insertion or deletion. I leave the
details of a trie-based data structure as an exercise for those who are interested.

 n

∑ j-θ
 j = 1

 t

∑ j-θ
 j = 1

 t

Posting-list compression:
We departed from the treatment in Section 5.3 of Introduction to Information Retrieval
when we discussed bit-level variable-length codes for positive integers.

Notation:

1. string1 ◦ string2 denotes the concatenation of string1 and string2;
2. For any real number v, v (read floor of v) denotes the largest integer less

than or equal to v; for non-negative v, this is the same as the integer part of v.
3. For any real number v, v (read ceiling of v) denotes the smallest integer

greater than or equal to v.

Let x be a positive integer.

Unary representation of x: 11….10 with x 1’s (same as in Section 5.3).

Elias γ-code for x:

 unary rep. of log x ◦ log x-bit binary rep. of (x-2log x)

Elias δ-code for x:

Elias γ-code for log x ◦ log x-bit binary rep. of (x-2log x)

The Elias γ-code for x is of length 2*log x +1, essentially twice the optimal length.
The Elias δ-code for x is of length 2*log (log x)  +1 + log x, which has an
overhead in additional bits of essentially 2 times the log of the optimal length (i.e.
2loglogx) – a relatively small quantity for large x.

Golomb code for x:

unary rep. of (x/b) ◦ log b-bit binary rep. of (x - (x/b)*b)
The Golumb code for x is of length (x/b) +1 + log b. This is a slightly simplified
version of the Golumb code; the full version is one bit shorter in some instances.
Quantity b is a parameter that must be chosen for each application. In Modern
Information Retrieval (on reserve), Baeza-Yates and Ribeiro-Neto claim that for
compressing a sequence of gaps representing the postings list of documents for a term j,
b = 0.69(N/nj) works well. N is the total number of documents, and nj is the document
frequency for term j (as used in tf-idf weighting for the vector model). The quantity N/nj
is an estimate of gap size. Note that b changes for each term in the lexicon, and all the
documents must be processed to determine nj before compressing the postings lists.

Skip pointers for postings lists:
We covered this briefly. A discussion of standard skip pointers is in Section 2.3 of
Introduction to Information Retrieval. The sequence of documents between any two
skip points can be represented using a compressed sequence of gaps. The sequence of

documents at skip points can also be represented using a compressed sequence of gaps.
The full development is presented in a paper by A. Moffat and J. Zobel: Self- indexing
inverted files for fast text retrieval,† ACM Transactions on Information Systems, Vol. 14,
No. 4 (Oct. 1996), pgs 349-379.

Some compression numbers we looked at in class:

Reuters-RCV1 collection:
see Table 5.6 in Introduction to Information Retrieval.

TREC-3 collection as compressed by Moffat and Bell
(reference: A. Moffat and J. Zobel, Self- indexing inverted files for fast text retrieval,†
ACM Transactions on Information Systems, Vol. 14, No. 4 (Oct. 1996), pgs 349-379. See
also Section 7.4.5 of Modern Information Retrieval on reserve in Engineering Library.):

2 GB of document data
1,743,848 documents of size at most 1KB (larger docs chopped into multiple docs)
538,244 terms in dictionary
Inverted index size without compression : 1.1 GB

Entries of the posting list for a term contain only (docID, term frequency in doc)
pairs, not a list of occurrences within the document.

Compressed: 184 MB, a 6:1 compression
Gaps between document IDs in the posting lists are compressed used the Golomb
code. (For this application, the Golomb code was shown to be slightly better than
the Elias δ-code, which is better than the Elias γ-code.) The term frequency
values are compressed using the Elias γ-code.

The early (1998) Google index
(reference: S. Brin and L. Page, The Anatomy of a Large-Scale Hypertextual Web Search
Engine,† Proceedings of the Seventh International WWW Conference (WWW 7), 1998.) :

14 million terms in the dictionary
24 million documents using 147.8 GB
inverted index using custom, sometimes lossy, compression: 53.5GB

† Links provided on “Schedule and Assignments” Web page.

