Clustering

Informal goal

- Given set of objects and measure of similarity between them, group similar objects together
- What mean by "similar"?
- What is good grouping?
- Computation time / quality tradeoff

General types of clustering

- · "Soft" versus "hard" clustering
 - Hard: partition the objects
 - · each object in exactly one partition
 - Soft: assign degree to which object in cluster
 - · view as probability or score
- flat versus hierarchical clustering
 - hierarchical = clusters within clusters

2

Applications:

Many

- biology
- astronomy
- computer aided design of circuits
- information organization
- marketing

– ..

3

Clustering in information search and analysis

- · Group information objects
 - ⇒ discover topics
 - ? other groupings desirable
- · Clustering versus classifying
 - classifying: have pre-determined classes with example members
 - clustering:
 - get groups of similar objects
 - added problem of labeling clusters by topic
 - e.g. common terms within cluster of docs.

Example applications in search

- Query evaluation: cluster pruning (§7.1.6)
 - cluster all documents
 - choose representative for each cluster
 - evaluate query w.r.t. cluster reps.
 - evaluate query for docs in cluster(s) having most similar cluster rep.(s)
- · Results presentation: labeled clusters
 - cluster only query results
 - e.g. Clusty.com (metasearch)

hard / soft? flat / hier?

5

Issues

- What attributes represent items for clustering purposes?
- What is measure of similarity between items?
 - · General objects and matrix of pairwise similarities
 - Objects with specific properties that allow other specifications of measure
 - Most common:

Objects are d-dimensional vectors

- » Euclidean distance
- » cosine similarity
- What is measure of similarity between clusters?

Issues continued

- · Cluster goals?
 - Number of clusters?
 - flat or hierarchical clustering?
 - cohesiveness of clusters?
- · How evaluate cluster results?
 - relates to measure of closeness between clusters
- Efficiency of clustering algorithms
 - large data sets => external storage
- Maintain clusters in dynamic setting?
- Clustering methods? MANY!

7

General types of clustering methods

- agglomerative versus divisive algorithms
 - agglomerative = bottom-up
 - build up clusters from single objects
 - divisive = top-down
 - break up cluster containing all objects into smaller clusters
 - both agglomerative and divisive give hierarchies
 - hierarchy can be trivial:

```
1 (..)...
3 (((..).).).
4 ((((..).).).)
```

8

General types of clustering methods cont.

- constructive versus iterative improvement
 - constructive: decide in what cluster each object belongs and don't change
 - often faster
 - iterative improvement: start with a clustering and move objects around to see if can improve clustering
 - often slower but better

9

Quality of clustering

- In applications quality of clustering depends on how well solves problem at hand
- Algorithm uses measure of quality that can be optimized, but that may or may not do a good job of capturing application needs.
- Underlying graph-theoretic problems usually NP-complete
 - e.g. graph partitioning
- Usually algorithm not finding optimal clustering

10

Distance between clusters

Possible definitions:

- I. distance between closest pair of objects with one in each cluster
 - called single link

^ ^

- II. distance between furthest pair objects, one from each cluster
 - called complete linkage

1

Distance between clusters, cont.

Possible definitions:

- III. average of pairwise distance between all pairs of objects, one from each
 - more computation
- Generally no representative point for a cluster;
- If Euclidean distance
 - centroid
 - bounding box

12