Clustering Algorithms for general similarity measures

General Agglomerative

- Uses any computable cluster similarity measure $\text{sim}(C_i,\,C_j)$
- For n objects v_1, \dots, v_n , assign each to a singleton cluster $C_i = \{v_i\}$.
- repeat {
 - identify two most similar clusters C_i and C_k (could be ties - chose one pair)
 - delete C_j and C_k and add (C_j U C_k) to the set of clusters
 - } until only one cluster
- Dendrograms diagram the sequence of cluster merges.

Agglomerative: remarks

- Intro. to IR discusses in great detail for cluster similarity: - single-link, complete-link, avg. of all pairs, centroid
- · Uses priority queues to get time complexity O((n²logn)*(time to compute cluster similarity))
 - one priority queue for each cluster: contains similarities to all other clusters plus bookkeeping info

time complexity more precisely:
 O((n²) *(time to compute object-object similarity) +

 (n²logn)*(time to compute sim(cluster_z, cluster_j U cluster_k)
 if know sim(cluster_z, cluster_j) and sim(cluster_z, cluster_k)))

· Problem with priority queue?

Single pass agglomerative-like

```
Given arbitrary order of objects to cluster: v_{\text{1}},\,...,\,v_{\text{n}} and threshold \tau
     Put v<sub>1</sub> in cluster C<sub>1</sub> by itself
    For i = 2 to n {
           for all existing clusters C
                calculate sim(v<sub>i</sub>, C<sub>i</sub>);
           record most similar cluster to v<sub>i</sub> as C<sub>max(i)</sub>
           if sim(v_i, C_{max(i)}) > \tau add v_i to C_{max(i)}
           else create new cluster {v<sub>i</sub>}
```

Issues

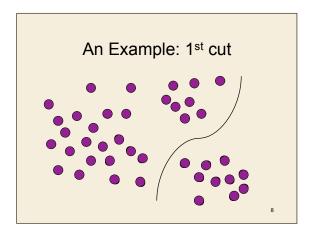
- · put v_i in cluster after seeing only $V_1, \dots V_{i-1}$
- · not hierarchical
- · tends to produce large clusters
 - depends on τ
- · depends on order of vi

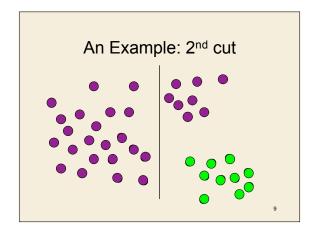
Alternate perspective for single-link algorithm

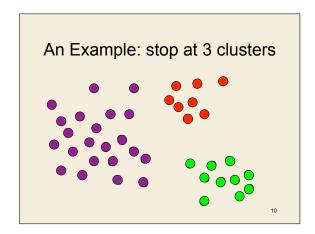
- Build a minimum spanning tree (MST) graph alg.
 - edge weights are pair-wise similarities
 - since in terms of similarities, not distances, really want maximum spanning tree
- For some threshold τ, remove all edges of similarity $< \tau$
- Tree falls into pieces => clusters
- Not hierarchical, but get hierarchy for sequence of τ

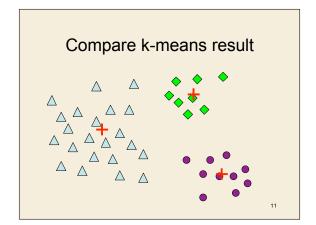
Hierarchical Divisive: Template

- 1. Put all objects in one cluster
- 2. Repeat until all clusters are singletons
 - a) choose a cluster to split
 - · what criterion?
 - b) replace the chosen cluster with the sub-clusters
 - split into how many?
 - how split?
 - "reversing" agglomerative => split in two
- cutting operation: cut-based measures seem to be a natural choice.
 - focus on similarity across cut lost similarity
- not necessary to use a cut-based measure









Cut-based optimization

- weaken the connection between objects in different clusters *rather than* strengthening connection between objects within a cluster
- Are many cut-based measures
- We will look at one

12

Inter / Intra cluster costs

Given:

- $V = \{v_1, ..., v_n\}$, the set of all objects
- A partitioning clustering $C_1,\,C_2,\,\dots\,C_k$ of the objects: $V=U_{i=1,\,\dots,\,k}\,\,C_i\;.$

Define:

- cutcost $(C_p) = \sum_{\substack{v_i \text{ in } C_p \\ v_j \text{ in } V C_p}} sim(v_i, v_j).$
- $intracost(C_p) = \sum_{v_i, v_j \text{ in } C_p} sim(v_i, v_j).$

13

Cost of a clustering

$$cost(C_1, ..., C_k) =$$

$$\sum_{p=1}^{k} \frac{\text{cutcost}(C_p)}{\text{intracost}(C_p)}$$

 contribution each cluster: ratio external similarity to internal similarity

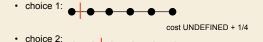
min-max cut optimization

Find clustering
$$C_1, \ldots, C_k$$
 that minimizes $cost(C_1, \ldots, C_k)$

4

Simple example

- · six objects
- · similarity 1 if edge shown
- · similarity 0 otherwise



cost 1/1 + 1/3 = 4/3

cost 1/2 + 1/2 = 1 *prefer balance

15

Hierarchical divisive revisited

- can use one of cut-based algorithms to split a cluster
- · how choose cluster to split next?
 - if building entire tree, doesn't matter
 - if stopping a certain point, choose next cluster based on measure optimizing
 - e.g. for min-max cut, choose C_i with largest cutcost(C_i) / intracost(C_i)

16

Divisive Algorithm: Iterative Improvement; no hierarchy

- 1. Choose initial partition C_1, \ldots, C_k
- 2. repeat {

unlock all vertices

repeat {

choose some C_i at random

choose an unlocked vertex \mathbf{v}_{j} in \mathbf{C}_{i} move \mathbf{v}_{i} to that cluster, if any, such that move

gives maximum decrease in cost

lock vertex v_i

} until all vertices locked

}until converge

Observations on algorithm

- heuristic
- · uses randomness
- convergence usually improvement < some chosen threshold between outer loop iterations
- vertex "locking" insures that all vertices are examined before examining any vertex twice
- · there are many variations of algorithm
- can use at each division of hierarchical divisive algorithm with k=2
 - more computation than an agglomerative merge

18

Compare to k-means

- · Similarities:
 - number of clusters, k, is chosen in advance
 - an initial clustering is chosen (possibly at random)
 - iterative improvement is used to improve clustering
- · Important difference:
 - min-max cut algorithm minimizes a cut-based cost
 - k-means maximizes only similarity within a cluster
 - · ignores cost of cuts

19

Eigenvalues and clustering

General class of techniques for clustering a graph using eigenvectors of adjacency matrix (or similar matrix) called

Spectral clustering

First described in 1973

Spectral clustering: brief overview

- · k: number of clusters
- · nxn object-object sim. matrix S of non-neg. values Compute:
- 1. Derive matrix L from S (straightforward computation)
 - e.g. Laplacian: are variations in def.
- eigenvectors corresponding to k smallest eigenvalues
- 3. use eigenvectors to define clusters
 - variety of ways to do this
 - all involve another, simpler, clustering
 - e.g. points on a line

Spectral clustering optimizes a cut measure

similar to min-max cut

HITS and clustering

- Non-principal eigenvectors of EE^T and E^TE have positive and negative component values
 - Denote a_{e2}, a_{e3}, ... matching he2, he3, ...
 - E is adjacency matrix
- For a matched pair of eigenvectors \mathbf{a}_{e_i} and \mathbf{h}_{e_i}
 - Denote kth component of jth pair: **a**ei(k) and **h**ei(k)
 - Make a "community" of size c (chosen constant):
 - Choose c pages with most positive $h_{ei}(k)$ hubs Choose c pages with most positive a_{ej}(k) - authorities
 - Make another "community" of size c:
 - Choose c pages with most negative $\mathbfit{h}_{\mathrm{ej}}(\mathbf{k})$ hubs
 - Choose c pages with most negative $\mathbf{a}_{ej}(\mathbf{k})$ authorities

Comparing clusterings

- · Define external measure to
 - comparing two clusterings as to similarity
 - if one clustering "correct", one clustering by an algorithm, measures how well algorithm
- External measure independent of cost function optimized by algorithm

one measure motivated by F-score in IR: combining precision and recall

a "correct" clustering $S_1, \dots S_k$ of the objects (\equiv relevant) a computed clustering $C_1, \, \dots \, C_k$ of the objects (\equiv retrieved)

 $\begin{array}{c} \textit{precision} \text{ of } C_x \text{ w.r.t } S_q = p(x,q) = |S_q \cap C_x| \ / \ |C_x| \\ \text{fraction of computed cluster that is "correct"} \end{array}$

recall of C_x w.r.t $S_q = r(x,q) = |S_q \cap C_x| / |S_q|$ fraction of a "correct" cluster found in a computed cluster

Fscore of C_x w.r.t S_q = F(x,q) = 2r(x,q)*p(x,q) / (r(x,q)+p(x,q))combine precision and recall (Harmonic mean)

Fscore of $\{C_1, C_2, ... C_k\}$ w.r.t S_q = F(q) = $\max_{x = 1, ..., k} F(x,q)$ score of best computed cluster for S_q Fscore of $\{C_1, C_2, ... C_k\}$ w.r.t $\{S_1, S_2, ... S_k\}$ = $\sum_{q = 1, ..., k} (|S_q|/n) *F(q)$ for n items overall weighted average of best scores over all correct clusters

• always ≤ 1 • Perfect match computed clusters to correct clusters gives Fscore = 1• Not symmetric: $\{C_i\}$ with respect to $\{S_j\}$

Clustering: wrap-up

- many applications
 - application determines similarity between objects
- · menu of
 - cost functions to optimizes
 - similarity measures between clusters
 - types of algorithms
 - flat/hierarchical
 - · constructive/iterative
 - algorithms within a type

26