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Reductions

! designing algorithms

! linear programming

! establishing lower bounds

! establishing intractability

! classifying problems
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

• Linear:  min/max, median, BWT, smallest enclosing circle, ...

• Linearithmic:  sorting, convex hull, closest pair, furthest pair, …

• Quadratic:  ???

• Cubic:  ???

• …

• Exponential:  ???

Frustrating news.

Huge number of fundamental problems have defied classification.

3

Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

Desiderata'.

Suppose we could (couldn't) solve problem X efficiently.

What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to 

place it, and I shall move the world.  ”    — Archimedes
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Cost of solving X  =  total cost of solving Y  +  cost of reduction.

instance I

(of X)

Algorithm for X

solution to I
Algorithm

for Y

perhaps many calls to Y

on problems of different sizes

preprocessing and postprocessing
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Ex 1.  [element distinctness reduces to sorting]

To solve element distinctness on N integers:

• Sort N integers.

• Scan through adjacent pairs and check if any are equal.

Cost of solving element distinctness.  N log N  +  N

instance I

(of X)

Algorithm for X

solution to I
Algorithm

for Y

cost of sorting
cost of reduction
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Ex 2.  [3-collinear reduces to sorting]

To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle.

- scan through adjacent triples and check if they are collinear

Cost of solving 3-collinear.  N2 log N  +  N2.

instance I

(of X)

Algorithm for X

solution to I
Algorithm

for Y

cost of sorting
cost of reduction
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! designing algorithms

! establishing lower bounds

! establishing intractability

! classifying problems
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Reduction:  design algorithms

Def.  Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Design algorithm.  Given algorithm for Y, can also solve X.

Ex.

• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• PERT reduces to topological sort.  [see digraph lecture]

• h-v line intersection reduces to 1D range searching.  [see geometry lecture]

• Euclidean MST reduces to Delaunay triangulation.  [see geometry lecture]

Mentality.  Since I know how to solve Y, can I use that algorithm to solve X?

programmer’s version:  I have code for Y. Can I use it for X?



Sorting.  Given N distinct integers, rearrange them in ascending order.

Convex hull.  Given N points in the plane, identify the extreme points

of the convex hull (in counter-clockwise order).

Proposition.  Convex hull reduces to sorting.

Pf.  Graham scan algorithm.

Cost of convex hull.  N log N  +  N.
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Convex hull reduces to sorting

convex hull sorting

1251432

2861534

3988818

4190745

13546464

89885444

43434213

34435312

cost of reduction
cost of sorting

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 

directed shortest path.

s

2

3

5

6 t5
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9

12

1015
4
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 

directed shortest path.

Pf.  Replace each undirected edge by two directed edges.
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 

directed shortest path.

Cost of undirected shortest path.  E log V  +  E.

s

2

3

5

6 t5

10

12

15

9

12

1015
4

12

cost of shortest 

path in digraph

cost of reduction
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Shortest path with negative weights

Caveat.  Reduction is invalid in networks with negative weights

(even if no negative cycles).

Remark.  Can still solve shortest path problem in undirected graphs

(if no negative cycles), but need more sophisticated techniques.

tva 7  -4

tvs 7  -4

7  -4

reduction creates

negative cycles

reduces to weighted

non-bipartite matching (!)

Some reductions involving familiar problems

14

LP

element

distinctness

sorting

shortest paths

(nonnegative)

bipartite

matching

 maximum flow 

convex hull

median

arbitrage

shortest paths

(no neg cycles)

Delaunay

closest

pair

Euclidean

MST

furthest

pair

undirected shortest paths

(nonnegative)

stay tuned (next)
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Linear Programming

What is it?

• Quintessential tool for optimal allocation of scarce resources

• Powerful and general problem-solving method

Why is it significant?

• Widely applicable.

• Dominates world of industry. 

• Fast commercial solvers available:  CPLEX, OSL.

• Powerful modeling languages available:  AMPL, GAMS.

• Ranked among most important scientific advances of 20th century.

Present context: Many important problems reduce to LP

see ORF 307

Ex:  Delta claims that LP

saves $100 million per year.
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Applications

Agriculture.  Diet problem.

Computer science.  Compiler register allocation, data mining.

Electrical engineering.  VLSI design, optimal clocking. 

Energy.  Blending petroleum products.

Economics.  Equilibrium theory, two-person zero-sum games.

Environment.  Water quality management. 

Finance.  Portfolio optimization.

Logistics.  Supply-chain management.

Management.  Hotel yield management.

Marketing.  Direct mail advertising. 

Manufacturing.  Production line balancing, cutting stock.

Medicine.  Radioactive seed placement in cancer treatment.

Operations research.  Airline crew assignment, vehicle routing.

Physics.  Ground states of 3-D Ising spin glasses.

Plasma physics.  Optimal stellarator design.

Telecommunication.  Network design, Internet routing.

Sports.  Scheduling ACC basketball, handicapping horse races.

Linear programming

Model problem as maximizing an objective function subject to constraints

Input:  real numbers  aij cj, bi.

Output:  real numbers xj.

Solutions (see ORF 307)

• Simplex algorithm has been used for decades to solve practical LP instances

• Newer algorithms guarantee fast solution 

18

maximize c1 x1 + c2 x2 + . . . + cn xn  

subject to the
constraints

a11 x1 + a12 x2 + . . . + a1n xn  !  b1subject to the
constraints a21 x1 + a22 x2 + . . . + a2n xn  !  b2

...

am1 x1 + am2 x2 + . . . + amn xn  !  bm

x1 , x2 ,... , xn  !  0

n variables

m
 e

qu
at

io
ns

maximize cT
 x  

subject to the 
constraints

A x  !  bsubject to the 
constraints x  !  0

matrix version

Linear programming

“Linear programming” 

• process of formulating an LP model for a problem

• solution to LP for a specific problem gives solution to the problem

• equivalent to “reducing the problem to LP”

1. Identify variables

2. Define constraints (inequalities and equations)

3. Define objective function

Examples:

• shortest paths

• maxflow

• bipartite matching

     . . .

• [ a very long list ]
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stay tuned (next)
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Single-source shortest-paths problem (revisited)

Given. Weighted digraph, single source s.

Distance from s to v: length of the shortest path from s to v .

Goal.  Find distance (and shortest path) from s to every other vertex.
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Single-source shortest-paths problem reduces to LP
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s
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6
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One variable per vertex, one inequality per edge.

maximize xt 

subject
to the 

constraints

xs + 9  !  x2subject
to the 

constraints
xs + 14  !  x6

subject
to the 

constraints xs + 15  !  x7

x2 + 24  !  x3

x3 + 2  !  x5

x3 + 19  !  xt

x4 + 6  !  x3

x4 + 6  !  xt

x5 + 11  !  x4

x5 + 16  !  xt

x6 + 18  !  x3

x6 + 30  !  x5

x6 + 5  !  x7

x7 + 20  !  x5

x7 + 44  !  xt

xs  =  0

interpretation:
xi = length of 

shortest path from 
source to i

Single-source shortest-paths problem reduces to LP
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s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15
50

34

45

maximize xt 

subject
to the 

constraints

xs + 9  !  x2subject
to the 

constraints
xs + 14  !  x6

subject
to the 

constraints xs + 15  !  x7

x2 + 24  !  x3

x3 + 2  !  x5

x3 + 19  !  xt

x4 + 6  !  x3

x4 + 6  !  xt

x5 + 11  !  x4

x5 + 16  !  xt

x6 + 18  !  x3

x6 + 30  !  x5

x6 + 5  !  x7

x7 + 20  !  x5

x7 + 44  !  xt

xs  =  0

xs  =  0

x2  =  9

x3  =  32

x4  =  45

x5  =  34

x6  =  14

x7  =  15

xt  =  50

solution

One variable per vertex, one inequality per edge.

interpretation:
xi = length of 

shortest path from 
source to i

3

3

23

Maxflow problem

Given: Weighted digraph, source s, destination t.

Interpret edge weights as capacities

• Models material flowing through network

• Ex: oil flowing through pipes

• Ex: goods in trucks on roads

• [many other examples]

Flow: A different set of edge weights

• flow does not exceed capacity in any edge 

• flow at every vertex satisfies equilibrium
[ flow in equals flow out ]

Goal:  Find maximum flow from s to t

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

flow out of s is 3

flow in to t is 3

1 2

10

1 1

2 1

flow " capacity
in every edge

flow in
equals

flow out
at each 
vertex

Maxflow problem reduces to LP
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maximize x3t  + x4t

subject
to the 

constraints

xs1  "  2
subject
to the 

constraints
xs2  "  3

subject
to the 

constraints
x13  "  3

x14  "  1

x23  "  1

x24  "  1

x3t  "  2

x4t  "  3

xs1  =  x13 + x14

xs2  =  x23 + x24

x13 + x23  =  x3t

x14 + x24  =  x4t

all xij  !  0

One variable per edge. 
One inequality per edge, one equality per vertex.

interpretation:
xij = flow in edge i-j

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from 

t to s

equilibrium
constraints

capacity
constraints
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Maxflow problem reduces to LP
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xs1  =  2

xs2  =  2

x13  =  1

x14  =  1

x23  =  1

x24  =  1

x3t  =  2

x4t  =  2

solution

One variable per edge. 
One inequality per edge, one equality per vertex.

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from 

t to s

maximize x3t  + x4t

subject
to the 

constraints

xs1  "  2
subject
to the 

constraints
xs2  "  3

subject
to the 

constraints
x13  "  3

x14  "  1

x23  "  1

x24  "  1

x3t  "  2

x4t  "  3

xs1  =  x13 + x14

xs2  =  x23 + x24

x13 + x23  =  x3t

x14 + x24  =  x4t

all xij  !  0

interpretation:
xij = flow in edge i-j

equilibrium
constraints

capacity
constraints

Maximum cardinality bipartite matching problem

Given: Two sets of vertices, set of edges

           (each connecting one vertex in each set)

Matching: set of edges

                with no vertex appearing twice 

Interpretation: mutual preference constraints

• Ex: people to jobs

• Ex: medical students to residence positions

• Ex: students to writing seminars

• [many other examples]

Goal: find a maximum cardinality matching
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A B C D E F

0 1 2 3 4 5

Alice
  Adobe, Apple, Google
Bob
  Adobe, Apple, Yahoo
Carol
  Google, IBM, Sun
Dave
  Adobe, Apple
Eliza
  IBM, Sun, Yahoo
Frank
  Google, Sun, Yahoo

Example: Job offers

Adobe
  Alice, Bob, Dave
Apple
  Alice, Bob, Dave
Google
  Alice, Carol, Frank
IBM
  Carol, Eliza
Sun
  Carol, Eliza, Frank
Yahoo
  Bob, Eliza, Frank

A B C D E F

0 1 2 3 4 5

Maximum cardinality bipartite matching problem reduces to LP
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maximize
xA0  +  xA1 + xA2 + xB0  +  xB1 + xB5 + 

xC2  + xC3  + xC4  +  xD0 + xD1

+ xE3 + xE4 + xE5 + xF2 + xF4 + xF5 

subject
to the 

constraints

xA0  +  xA1 + xA2 = 1subject
to the 

constraints

xB0  +  xB1 + xB5 = 1
subject
to the 

constraints xC2  + xC3  + xC4 = 1

xD0 + xD1  =  1

xE3 + xE4 + xE5  =  1

xF2 + xF4 + xF5  =  1

xA0  +  xB0 + xD0 = 1

xA1  +  xB1 + xD1 = 1

xA2  + xC2  + xF2 = 1

xC3 + xE3  =  1

xC4 + xE4 + xF4  =  1

xB5 + xE5 + xF5  =  1

all xij  !  0

One variable per edge, one equality per vertex.

interpretation:
An edge is in the 

matching iff xij = 1

constraints on 
top vertices 

A B C D E F

0 1 2 3 4 5

Theorem.  [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates

Corollary.  Can solve bipartite matching problem by solving LP

constraints on 
bottom vertices 

Crucial point:
   not always so lucky!

Maximum cardinality bipartite matching problem reduces to LP
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maximize
xA0  +  xA1 + xA2 + xB0  +  xB1 + xB5 + 

xC2  + xC3  + xC4  +  xD0 + xD1

+ xE3 + xE4 + xE5 + xF2 + xF4 + xF5 

subject
to the 

constraints

xA0  +  xA1 + xA2 = 1subject
to the 

constraints

xB0  +  xB1 + xB5 = 1
subject
to the 

constraints xC2  + xC3  + xC4 = 1

xD0 + xD1  =  1

xE3 + xE4 + xE5  =  1

xF2 + xF4 + xF5  =  1

xA0  +  xB0 + xD0 = 1

xA1  +  xB1 + xD1 = 1

xA2  + xC2  + xF2 = 1

xC3 + xE3  =  1

xC4 + xE4 + xF4  =  1

xB5 + xE5 + xF5  =  1

all xij  !  0

One variable per edge, one equality per vertex.

interpretation:
An edge is in the 

matching iff xij = 1

A B C D E F

0 1 2 3 4 5

A B C D E F

0 1 2 3 4 5

xA1  =  1

xB5  =  1

xC2  =  1

xD0  =  1

xE3  =  1

xF4  =  1

all other xij  =  0

solution



Linear programming perspective

Got an optimization problem?

    ex: shortest paths, maxflow, matching, . . . [many, many, more]

Approach 1: Use a specialized algorithm to solve it

• Algs in Java 

• vast literature on complexity

• performance on real problems not always well-understood

Approach 2: Reduce to a linear programming model, use a commercial solver

• a direct mathematical representation of the problem often works

• immediate solution to the problem at hand is often available

• might miss faster specialized solution, but might not care

Got an LP solver? Learn to use it!
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% ampl

AMPL Version 20010215 (SunOS 5.7)

ampl: model maxflow.mod;

ampl: data maxflow.dat;

ampl: solve;

CPLEX 7.1.0: optimal solution; 

objective 4;
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! designing algorithms

! linear programming

! establishing lower bounds

! establishing intractability
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Bird's-eye view

Goal.  Prove that a problem requires a certain number of steps.

Ex.  "(N log N) lower bound for sorting.

Bad news.  Very difficult to establish lower bounds from scratch.

Good news.  Can spread "(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction

is not too high

argument must apply to all 

conceivable algorithms

1251432

2861534

3988818

4190745

13546464

89885444

43434213

32

Linear-time reductions

Def.  Problem X linear-time reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to Y.

Ex.  Almost all of the reductions we've seen so far.

Q.  Which one was not a linear-time reduction?

Establish lower bound:

• If X takes "(N log N) steps, then so does Y.

• If X takes "(N2) steps, then so does Y.

Mentality.

• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.
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Lower bound for convex hull

Proposition.  In quadratic decision tree model, any algorithm for sorting

N integers requires "(N log N) steps.

Proposition.  Sorting linear-time reduces to convex hull.

Pf.  [see next slide]

Implication.  Any ccw-based convex hull algorithm requires "(N log N) ccw's. 

allows quadratic tests of the form:

 xi < xj or (xj - xi) (xk - xi) - (xj ) (xj - xi) < 0

a quadratic test

convex hullsorting

1251432

2861534

3988818

4190745

13546464

89885444

43434213

Proposition.  Sorting linear-time reduces to convex hull.

• Sorting instance: X = { x1, x2, ... , xN }

• Convex hull instance: P = { (x1 , x1
2 ), (x2, x2

2 ), ... , (xN , xN
2 ) }

Pf.

• Region {x : x2 # x} is convex  $  all points are on hull.

• Starting at point with most negative x, counter-clockwise order of hull 

points yields integers in ascending order.
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Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi
2 )

x

y
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,

are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432

-2861534

3988818

-4190745

13546464

89885444

-43434213
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,

are there 3 that all lie on the same line?

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

Pf.  [see next 2 slide]

Conjecture.  Any algorithm for 3-SUM requires "(N2) steps.

Implication.  No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  X = { x1, x2, ... , xN }

• 3-COLLINEAR instance:  P = { (x1 , x1
3 ), (x2, x2

3 ), ... , (xN , xN
3 ) }

Lemma.  If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27)
-3 + 2 + 1 = 0

f (x) = x3
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  X = { x1, x2, ... , xN }

• 3-COLLINEAR instance:  P = { (x1 , x1
3 ), (x2, x2

3 ), ... , (xN , xN
3 ) }

Lemma.  If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), (c, c3) are collinear.

Pf.   Three points (a, a3), (b, b3), (c, c3) are collinear iff:

                 (a3 - b3) / (a - b)   =  (b3 - c3) / (b - c) 

(a - b)(a2 + ab + b2) / (a - b)   =  (b - c)(b2 + bc + c2) / (b - c) 

                     (a2 + ab + b2)     =  (b2 + bc + c2) 

                   a2 + ab - bc - c2    =  0 

                   (a - c)(a + b + c)    =  0

                              a + b + c     =  0 

slopes are equal

factor numerators

a – b and b – c are nonzero

collect terms

factor

a – c is nonzero

More reductions and lower bounds

39

Delaunay

 3-sum

(N2 lower bound) 

convex hull

sorting 3-collinear

element distinctness

(N log N lower bound)

Euclidean MST

closest pair

min area triangle

dihedral

rotation

Establishing lower bounds through reduction is an important tool

in guiding algorithm design efforts.

Q.  How to convince yourself no linear-time convex hull algorithm exists?

A.  [hard way]  Long futile search for a linear-time algorithm.

A.  [easy way]  Reduction from sorting.

Q.  How to convince yourself no sub-quadratic 3-COLLINEAR algorithm exists.

A.  [hard way]  Long futile search for a sub-quadratic algorithm.

A.  [easy way]  Reduction from 3-SUM.

Establishing lower bounds:  summary

40



41

! designing algorithms

! linear programming

! establishing lower bounds

! establishing intractability

! classifying problems

42

Bird's-eye view

Desiderata.  Prove that a problem can't be solved in poly-time.

EXPTIME-complete.

• Given a constant-size program and input, does it halt in at most k steps?

• Given N-by-N checkers board position, can the first player force a win

(using forced capture rule)?

Frustrating news.  Extremely difficult and few successes.

input size = lg k

43

Literal. A boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form.  An and of clauses.

3-SAT.  Given a CNF formula % consisting of k clauses over n literals,

does it have a satisfying truth assignment?

Applications.  Circuit design, program correctness, ...

3-satisfiability

(¬T  & T  & F ) ' (T  & ¬T  & F ) ' (¬T  & ¬T  & ¬F ) ' (¬T  & ¬T &  T) ' ( ¬T &  F & T)
x1   x2   x3   x4

T    T    F    T

xi   or   ¬xi

C1 = (¬x1 & x2 & x3)

! = (C1 ' C2 ' C3 ' C4 ' C5)

yes instance

!  =  (¬x1 & x2 & x3) ' (x1 & ¬x2 & x3) ' (¬x1 & ¬x2 & ¬x3) ' (¬x1 &¬ x2 & x4) ' (¬x2 & x3 & x4)

3-satisfiability is intractable

Q.  How to solve an instance of 3-SAT with n variables?

A.  Exhaustive search:  try all 2n truth assignments.

Q.  Can we do anything substantially more clever?

Conjecture (P # NP).  No poly-time algorithm for 3-SAT.

Good news.  Can prove problems "intractable" via reduction from 3-SAT.

44

"intractable"
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Polynomial-time reductions

Def.  Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• Polynomial number of calls to Y.

Establish tractability.  If Y can be solved in poly-time, and X poly-time reduces 

to Y, then X can be solved in poly-time.

Establish intractability.  If 3-SAT poly-time reduces to Y, then Y is intractable.

Mentality.

• If I could solve Y in poly-time, then I could also solve 3-SAT.

• I can’t solve 3-SAT.

• Therefore, I can’t solve Y.

instance I

(of X)

Algorithm for X

solution to I
Algorithm

for Y

ILP.  Minimize a linear objective function, subject to linear inequalities,

and integer variables.

Proposition.  3-SAT poly-time reduces to ILP.

Pf.  [by example]

Therefore, ILP is intractable.
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Example: Integer linear programming

(¬x1 & x2 & x3) ' (x1 & ¬x2 & x3) ' (¬x1 & ¬x2 & ¬x3) ' (¬x1 &¬ x2 & x4) ' (¬x2 & x3 & x4)

maximize      C1 +  C2 + C3 + C4 + C5 

     C1  "  (1 – x1) + x2  + x3

     C2  "  x1 + (1 – x2)  + x3

subject

to the 
     C3  "  (1 – x1) + (1 – x2)  + (1 – x1)

to the 

constraints      C4  "  (1 – x1) + (1 – x2)  +  x4

     C5  "  (1 – x2) +  x3  + x4

all xi  and Cj  =  { 0, 1 }

CNF formula is satisfiable iff max = 5

C1 = 1 iff clause 1 is satisfied
 (either x1 = 0, x2 = 1, or x3 = 1)

boolean variable xi is true iff integer variable xi = 1

same argument for each clause
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More poly-time reductions from 3-satisfiability

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

Dick Karp

'85 Turing award

3
-S

A
T

red
uces to IN

T
E

G
E

R
 PR

O
G

R
A

M
M

IN
G

TSP

BIN-PACKING
Conjecture:  no poly-time algorithm for 3-SAT.

(and hence none of these problems)

Establishing intractability:  summary

Establishing intractability through poly-time reduction is an important tool

in guiding algorithm design efforts.

Q.  How to convince yourself that a new problem is intractable?

A.  [hard way]  Long futile search for an efficient algorithm (as for 3-SAT).

A.  [easy way]  Reduction from a know intractable problem (such as 3-SAT).

Caveat.  Intricate reductions are common.
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Implications of poly-time reductions

50

! designing algorithms

! establishing lower bounds

! establishing intractability

! classifying problems
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Classify problems

Desiderata.  Classify problems according to difficulty.

• Linear:  can be solved in linear time.

• Linearithmic:  can be solved in linearithmic time.

• Quadratic:  can be solved in quadratic time.

…

• Intractable:  seem to require exponential time.

Ex.  Sorting and convex hull are in same complexity class.

• Sorting linear-time reduces to convex hull.

• Convex hull linear-time reduces to sorting.

• Moreover, we have N log N upper and lower bound.
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Cook’s theorem

P.  Set of problems solvable in poly-time.

Importance.  What scientists and engineers can compute feasibly.

NP.  Set of problems checkable in poly-time.

Importance.  What scientists and engineers aspire to compute feasibly.

Cook's theorem.  All problems in NP poly-time reduce to 3-SAT.

"NP-complete"
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Implications of Cook’s theorem

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems (and many, many more)
poly-time reduce to 3-SAT.

Stephen Cook

'82 Turing award
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Implications of Karp + Cook

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
all of these problems are NP-complete; they are

manifestations of the same really hard problem

3-COLOR

reduces to 3-SAT
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Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

- stack, queue, sorting, priority queue, symbol table, set

- graph, shortest path, regular expression, Delaunay triangulation

- Voronoi, max flow, LP

• Determine difficulty of your problem and choose the right tool.

- use exact algorithm for tractable problems

- use heuristics for intractable problems


