6.3 Substring Search

st

Lo -
pomler"’ b

Q. Q- Substring
m mw;lme

text

C
Q)
—p
=P
(D
q
183G

q

© tposition
o

2 implementation

hashstate

» brute force

» Knuth-Morris-Pratt
» Boyer-Moore

» Rabin-Karp

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - April 7, 2009 7:35:27 PM

Applications

¢ Parsers.

Spam filters.

Digital libraries.

Screen scrapers.

* Word processors.

¢ Web search engines.

¢ Electronic surveillance.

* Natural language processing.

e Computational molecular biology.

» FBIs Digital Collection System 3000.

* Feature detection in digitized images.

Ie's how you know™

Substring search

Goal. Find pattern of length M in a text of length N.

typically N> M

pattern—N E E D L E

text—1 N A H A Y S T A C K N E ED L E I NA

match

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory

Application: Spam filtering

Identify patterns indicative of spam.
® PROFITS

® LOSE WE1GHT

® herbal Viagra

® There is no catch.

® LOW MORTGAGE RATES

® This is a one-time mailing.

® This message is sent in compliance with
spam regulations.
® You're getting this message because you

registered with one of our marketing partners.

Application: Electronic surveillance Application: Screen scraping

Goal. Extract relevant data from web page.

Need to monitor all
internet traffic.

(security)

Ex. Find string delimited by and after first occurrence of

No way!)
(privacy) pattern Last Trade:.
N)
. " Google Inc. (GOOG) 110 T 256.44 & 599 (226%) o
Well, we're mainly — <tr>
“ inferested in " =3 Google Inc. (NasdaqGs: G00G) 006 24-tou 11510 vl Sl @lemze My Enloicee A
"ATTACK AT DAWN ® R con o e Roaame 35848557 (1515 e width= "48%">
Historical Prices. Last Trade: 256.44 DaysRange: 25026-26995 20| Jlim .
e Last Trade:
OK. Build a e crnge: asseqamy Voume seooos </ta>
Basic Tech. Analysis Prev Close: 26243 Avg Vol @ 7334210 cher — " "
machine that JUST Nows & 1o open 2ees Maretcap 0T84 G006 oY Pt SecciasssiivEncREabladatalis
looks for- that. s e31x100 PEW 1648 | & S merir 0000 <big>452.92</big>
‘Company Events. Ask: 256.57 x 100 EPS iy hed % Download Annual Ref
e T | & o </td></tr>
<td class= "yfnc_tableheadl"
http://finance.yahoo.com/q?s=goog width= "48%">
Trade Time:
</ta>
ATTACK AT DAWN <td class= "yfnc_tabledatal">
substring search =
machine
found O
5 6

Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the index
of the first occurrence of a given string, strating at a given offset.

public class StockQuote
{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/q?s=";
String text = in.readAll();
int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("", start);
int to = text.indexOf ("", from);
String price = text.substring(from + 3, to);
StdOut.println(price) ;
}
}
| % java StockQuote goog

256.44

% java StockQuote msft
19.68

Brute-force substring search

Check for pattern starting at each text position.

txt[]

i j i+j 0 1 2 3 4 5 6 7 8 910

BACADABRATC
0 2 2 A B R entries in red are
1 0 1 A / mismatches
2 1 3 A B entries in gray are
3 0 3 A for reference only
4 1 > entries in black B
5 0 5 match the text A
6 4 10 A B R A

™~ return i when j isM
match

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

txt[]
i joi+] 01 2 3 4 5 8 9
A A AAAAAAAB
0 4 4 A A A A B
1 4 5 A A A A B
2 4 6 A A A A B
3 4 7 A A A A B
4 4 8 A A A A B
5 4 9 A A A A B
Brute-force substring search (worst case)

Worst case. ~ MN char compares.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

public static int search(char[] pat, char[] txt)
{
int M = pat.length;
int N = txt.length;
for (int i = 0; i < N - M; i++)
{
int j;
for (j = 0; j < M; j++)
if (txt[i+j] '= pat[]j])
break;

if (j == M) return i; index in text where

pattern starts

}

return N; <«— not found

Backup

In typical applications, we want to avoid backup in text stream.
* freat input as stream of data
* abstract model: stdin aTACK A% DR

substring search
machine

found @

Brute-force algorithm needs backup for every mismatch

matched chars

/mismufch

> >
> >

A AA
A AA

™ >

backup

AQ AANA
A
/

Shift pattern right one position l

Approach 1: Maintain buffer of size M (build backup into stdin)
Other approaches: Stay tuned.

Brute-force substring search: alternate implementation

Same sequence of char compares as previous implementation.
+ i points o end of sequence of already-matched chars in text.
+ j stores number of already-matched chars (end of sequence in pattern).

public static int search(char[] pat, char[] txt)

{

int j, M = pat.length;

int i, N = txt.length;

for (1 =0, J=0; i <N && j < M; i+4)
{

if (txt[i] == pat[j]) Jj++;
else { i -=j; j =0; } <« backup
}
if (j == M) return i - M;
else return N;

» Knuth-Morris-Pratt

Algorithmic challenges in substring search
Brute-force is often not good enough.

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup in text stream. <— oftenno room or fime to save text

Now is the time for all people to come to the aid of their party. Now is the time for all good pecple to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good pecple to come to the aid
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good pecple to come to the aid of their party. Now is the time for
all good pecple to come to the aid of their attack at dawn party. Now is the time for each person to come
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good pecple
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good pecple to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

<«— fundamental algorithmic problem

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern Baaaaaaaaa.
* Suppose we match 5 chars in pattern, with mismatch on 6™ char.

* We know previous 6 chars in text are BAAAAB.

» Don't need to back up text pointer!

i
BAAAABAAAAAAAAA
after mismatch
onsixthchar—B A A A A A
brute-force backs __—~ B
up to try this B
and this =~ B
and this B
and this BAAAAAAAA AA
and this
but o backup__— AAAAAAARAA
is needed
Text pointer backup in substring searching

Remark. It is always possible to avoid backup (1)

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on match?
A. Easy: the next one.

matched chars
current char

is match

A B BAC L\
A B A Che Q. Which pattern char should we

T compare with the next text char?

A pat[S]'

> > |

current text char: ¢
current pattern index: j
next pattern index: dfa[c][j]

j 012 3 45

table giving pat[j] A B A B A C
patternchar to

compare to the A
next text char dfa[]1[j]|B
C 6

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.
A. Have to do it for each possible char that could mismatch

matched chars
current char

l 7 is mismatch
ABABAB |
ABABAC \ Q. Which pattern char should we
X A compare with the next text char?
vABAB
A. pat[4] '
current text char: ¢
current pattern index: j
next pattern index: dfa[c][j]
j 012 3 45
table giving pat[j] A B A B A C

pattern’char to
compare to the A L
next text char dfa[]1[j]|B

C 6

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left fo right.

matched chars
current char

l / is mismatch
ABABAA |
ABABAC -\ Q. Which pattern char should we
X A compare with the next text char?
XABAB
X A
XAB
vV A

T current text char: ¢
current pattern index:

3
A. patlll’ next pattern index: dfal[c][j]
j 0123 45

table giving at[j A B A B A C
patternchar to patljl

compare to the A
next text char dfa[][j] | B
C 6

KMP substring search preprocessing (concept)

Fill in table columns by doing computation for each possible mismatch position

3 012 3 45
. pat[j] A B A B A C .
current text char: €
Ex. Builf table for arasac. AL 1315 1| curempmmomingon s
dfa[1[jI1[B 0 2 0 4 0 4 next pattern index: dfal[c][j]
C 00 0 O0 0 6
i pat[il dfal1[j] text (pattern itself) § pat(j] dfa[l(j] text (pattern itself)
A B C ABABAC A B C ABABAC
0 A 1 A 3 B 4 ABAB
B ABAA
0 1 A
C ABAC
0 0
1 B 2 AB 4 A 5 ABABA
AA ABABB
1 A 0
AC match (move to next char) ABABC
0 dfalpat(j11[j] = 3+1 0
known text ch
2 a3 AsA soc 6 ABABAC Lo
0 1 A
ABC / ABABAB
ismatch
0 (back'ip n patter) ~ 4 ABAB
backup is length of verls
" Foeginning of pattern
with knowi text chars

Total cost: O(M?R) char compares (stay tuned for a better method).

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

* Finite number of states (including start and halt).

» Exactly one transition for each input symbol.

* Accept if sequence of transitions leads to halt state.

internal representation
i 0 1 2 3 4 5

pat[j] A

A 3

8 0
C

dfa[][j]

cor»o
[SENTEC]
orkmw
cowvms
o sk Al

o If in state j reading char c:
mismatch \\\ halt if 3 is 6
transition match else move to state dfa[c] [3]
(back up) transition
graphical representation (increment)
\
\

Co OF > o L
@Q @:/b /

halt state

DFA corresponding to the string A B A B A C

Knuth-Morris Pratt algorithm: Build machine for pattern, simulate it on text.

KMP search: Java implementation

Key differences from brute-force implementation.
» Text pointer i never decrements.

* Need fo precompute dfa[][] table from pattern.
* Could use input stream

public int search(In in)
{
int i, j;
for (i =0, j = 0; 'in.isEmpty() && j < M; i++)
j = dfa[in.readChar()]I[j];
if (j == M) return i - M;
else return i;
}

23

KMP search: Java implementation
Key differences from brute-force implementation.

* Text pointer i never decrements.
* Need to precompute dfa[][] table from pattern.

public int search(int[] txt)

{
int i, j, N = txt.length;
for (i =0, J=0; i <N && j < M; i++)
j = dfaf[txt[i]][3];
if (j == M) return i - M;
else return N;
}

KMP substring search: trace

01 2 3 45 8 910 11 12 13 14 15 16 ~—— 1
read thischa———~B ¢ B A A B A C A A B A B A C A A -~—— txt[i]
inthisstate——0 0 0 0 1 1 0112 3 456 —]

o to this state A
found
A returni - M =9

A .

A J

/ B pat[j]
A

match: B .
set g to dfaltxt[i11(3] A dfa[1(j1|B

= dfa[pat[jI[j] 8 C

=i+

A
B
mismatch: B
set j to dfaltxt[i]][3] A
implies pattern shift to align
pat[§] with txt[i+1]) B
A

C
A B A B A C

Trace of KMP substring search (DFA simulation) for A B A B A C

o o R >0

o N mk

o o w >N

o & mlw

SISV IS ES

el %]

Efficiently constructing the DFA for KMP substring search

Q1. What state X would the DFA be in if it were restarted to correspond to shifting the
pattern one position to the right?

matched chars

l next char
ABABA /|
ABABAT
j 012 3 4
pat[j] A B A B A
A1l 1 3[1]s
Al. Use the (partially constructed) DFA to find X! d‘ca‘[][j]|‘3 0 2 01440
c o o0 0]o]o
BABA T’
0012
Q2. Why is that relevant?
A2. We want the same transitions for the next state on mismatch
copy dfal][X] fo dfa[][3] | 5 012345
pat[j] A B A B A C
A1 1 3 1 5|1
dfa[l1[jI1[B 0 2 0 4 0|4
C 0000 00
25
Efficiently constructing the DFA for KMP substring search
Build table by finding answer to Q1 for each pattern position.
i 0123 45
pat[jl A B A B A C
Q1. What state X would the DFA be in if it were restarted to correspond to shifting the A1 13 15 1
pattern one position to the right? dfa[][j]|B 020 40 4
C 000006
Important note:
* no need to restart DFA L .
* remember last restart state in X 5 8 restart
* use DFA to update X 00
3 B A £a[A] [0]
0o 0 1
dfa[B] [1]
X = dfa[pat[j]1[X] | 4 B A B
0 0 1
dfa[a] [2]
5 B A B —
o 0 1 2 3
DFA simulations to compute
restart statesforAB AB A C

27

Efficiently constructing the DFA for KMP substring search

Q1. What state X would the DFA be in if it were restarted to correspond to shifting the
pattern one position to the right?

matched chars

l next char
ABABA |
ABABATC
i 012 3 4
pat[j] A B A B A
A1 1 3([1]s
Al. Use the (partially constructed) DFA to find X! dfa[][j1|3 02 01410
c oo ofofo
BABA }J
0012
Q2. Why is that relevant?
A2. We want the same transitions for the next state on mismatch
copy dfa[][X] fo dfa[]([3] | i 0123 a4
pat[j] A B A B A
A2 (continued). and a different transition (to 3+1) on match A1 13 15
. . dfa[1[j1[B 0 2 0 4 0
dfa[pat[3jI1[j] = j+1 | C 0000 0

o & R|0|luv

Constructing the DFA for KMP substring search: example

i 0 C¢ i
. e e
pat[j] A A—
A Er—0
dfa[1[j1[8 0
c o
X
|
D01 copy dfal1X] 10 dfall[j]
pat[j] A B dfafpat[j11[3] = j+1;
A1 X = dfa[pat[j11[X1];
dfal1(jl]s 0 2
c 0 o0
1<)
B.C A J
. i e
- G —afimo
pat[j] A B A X ‘\\(_/m
Al o103
dfall(j1[8 0 2 0
co 0 o0
X
|
i 0 1 2 3 C (*/_\,\ 3
pat[1 A B A B AQQH% A3
Al 1 3 1 ®;\‘\‘_\x/“® . ®
dfal1[31]8 0 2 0 4 v
co 0 0 0
Constructing the DFA for KMP substring searchforA B AB A C

Constructing the DFA for KMP substring search: example

X
|
i 0 1 2 3 Cs (/\ j
i) A
pat(jl A B A B ()= h (Lt e () A (T b
P %EQ (@ ®
dfallille 0 2 0 4 \—/
c 0 0 0 0
X
|
i 0 1 2 3 4 e (! m j
i) A v
pat[il A B A B A (O AL s e (T A Y3) 6 e (T —
A1l 1 3 1 5 %EQ . B@ ®©
dfall[31]8 0 2 0 4 0 \—/ :
c o 0 0 0 0
X
| .)
i 0 1 2 3 4 5 (uc A /_\; A g
patlil A B A B A C UHCQUHQH el
Al 1 3 1 5 1 ‘\\f_/ﬁ c ol
dfal[1[j1(B O 2 0 4 0 4 \—/ :
c 0 0 0 0 0 6
Constructing the DFA for KMP substring searchforA B A B A C

29

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when construction DFA, and we access
each text char once (in the worst case) when simulating the DFA on given text.

Remark. Takes time and space proportional to R M to build afafi11,
but with cleverness, can reduce time and space to M.

Constructing the DFA for KMP substring search: Java implementation

For each j3:

* Copy dfa[][x] o dfa[][j] for mismatch cas
e Set dfa[pat[j]1]1[3j] to j+1 for match case.

* Update x.

public KMP(int R, char[] pat)
{
this.pat = pat;
M = pat.length;
dfa = new int[R] [M];
dfa[pat[0]][0] = 1;
for (int X =0, j =1; j <M; j++)
{
for (int ¢ = 0; c < R; c++)

dfa[c] [j] = dfa[c][X]; «—
dfa[pat[jl1[]j] = j+1; «—
X = dfa[pat[j]][X]; —

e.

—— copy mismatch cases
— set match case
— update restart state

Knuth-Morris-Pratt: brief history

Brief history.
* Inspired by esoteric theorem of Cook.

* Discovered in 1976 independently by two theoreticians and a hacker.

- Knuth: discovered linear-time algorithm

- Pratt: made running time independent of alphabet

- Morris: trying to build a text editor
* Theory meets practice.

Stephen Cook Don Knuth Jim Morris

Robert Boyer J. Strother Moore

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[e] = rightmost occurrence of character c in pat].

right = new int[R];

for (int ¢ = 0; ¢ < R; c++)
right[c] = -1;

for (int j = 0; j < M; j++)
right[pat[j]l] = j;

txt[]
4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26
NGSEARTU CHTINGC CONSTISTTING
G
N

4 4

2 1 TI G

10 4 G

15 4 G

20 4 G

20 04—”1[11[/1 S T I NG

return’i = 20 Right-to-left (Boyer-Moore) substring search

33

35

Boyer-Moore: mismatched character heuristic

Intuition.
* Scan characters in pattern from right to left.
* Can skip M fext chars when finding one not in the pattern.

not in pattern

txt[]
i j 0 1 2 3 4\5 6 7 8 91011 12 13 14 15 16 17
A A ABBAABABAAABIBATGY
5 6 Y
1 6 Y
15 3 Y G Y
N\
returni = 18 (no match)

Boyer-Moore: Java implementation

public int search(char[] txt)
{
int N = txt.length;
int M = pat.length;
int skip;
for (int i = 0; i <= N-M; i += skip)
{
skip = 0;
for (int j = M-1; j >= 0; j--)
!
if (pat[j] '= txt[i+]])
{
skip = Math.max (1, j - right[txt[i+j]]);
break;
}
if (skip == 0) return i;
}
return N;
}

compute skip value

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about N/M steps to search for a pattern of length M ina
text of length N. AN

sublinear

Worst-case. Can be as bad as MN.

Boyer-Moore variant. Can improve worst case to M + N by adding a KMP-like
rule to guard against repetitive patterns.

¢ Used in Unix, emacs.

37

Rabin-Karp fingerprint search

Basic idea.

» Compute a hash of pat[0..M).

» Compute a hash of txt[i..M+i) for each i.

 If pattern hash = text substring hash, check for a match.

pat[]
i 012 3 4

2 6 5 3 5 %997 =613

txt[]
5 6 7 8 910 11 12 13 14 15
9 2 6 5 3 5 8 9 7 9 3
% 997 = 508
9 % 997 = 201
2 % 997 =715
6 % 997 = 971
6 5 % 997 = 442
6 5 3 %997 = 929
6 5 3 5 %997 =613

wlo

R oRoRR

I N N NN

B R R R RPw
IRV RNV IRV RNV ERVIFEN

© © © ©

match

NONONN

~— returni = 6

39

Michael Rabin, Turing Award '76
and Dick Karp, Turing Award '85

Efficiently computing the hash function

Modular hash function. Using the notation r for txt[i], we wish to compute
Xi=ti RM + iy RM2 + |+ tizmr RO (mod Q)

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

Do 1;33;[]3 . // Compute hash for key[0..M-1]
ﬁ private int hash(char[] key, int M)
{

0 2 %997 =2 R q
1 2 6 %997 = (2¥10 + 6) % 997/ 26 fp B o O
2 26 5 % 9;7 26'+‘10 5) % ;97 265 o (i g = 0 § S I

¢ 997 = (26710 + 8 % 997 = h= (R *h +key[j]) % 0
3 2 6 5 3 %997 = (265%10 + 3) % 997 = 659

return h;

4 2 6 5 3 5 %997 = (651%10 + 5) % 997 = 613

40

Efficiently computing the hash function

Challenge. How to efficiently compute xi.1 given that we know ..

Xi=tiRM1 + iy RM2 + .+ tiyma RO

Xiv1 = it RM + tio RM + .+ tism R!

Key observation. Can do it in constant timel

Xiyl = (xi -tin1 R M'l) R + tism

txt[]

i ... 2 3 4 5 6 7
current value 4 1 5 9
new value 15 9

~
o

current value

subtract leading digit

'
IS
S}

* v o wn

add new trailing digit

N+ NR VoL

2
0
2
0 multiply by radix
0
6
6

new value

Rabin-Karp: Java implementation (continued)

public int search(char[] txt) {
int N = txt.length;
if (N < M) return N;
int offset = hashSearch (txt) ;
if (offset == N) return N;

for (int i = 0; i < M; i++)

if (pat[i] !'= txt[offset + i]) —

return N;
return offset;

}

private int hashSearch(char[] txt) {

int N = txt.length;

int txtHash = hash(txt);

if (patHash == txtHash) return 0;

for (int i = M; i < N; i++) {
txtHash = (txtHash + Q - RM*txt[i-M] % Q) % Q;
txtHash = (txtHash*R + txt[i]) % Q;
if (patHash == txtHash) return i - M + 1;

—

}

return N;

41

check if hash collision
corresponds to a match

check for hash collision
using rolling hash function

43

Rabin-Karp: Java implementation

public class RabinKarp {

private
private
private
private
private
private

public RabinKarp(int R, char[] pat) {
this.R = R;
this.pat = pat;
this.M = pat.length;

char[] pat; // the pattern

int patHash; // pattern hash value

int M; // pattern length

int Q = 8355967; // modulus <«———+— alarge prime, but small enough
int R; // radix to avoid 32-bit integer overflow
int RM; // R*(M-1) % Q

RM = 1;

for

RM =

private int hash(char[] key)
{ /* as before */ }

public int search(char[] txt)
{ /* see next slide */ }

(int i

(R * RM) % Q;
patHash = hash(pat) ;

<«——+— precompute R*! (mod Q)
=1; i <= M-1; i++)

42

Rabin-Karp substring search example

txt[]

(SR

2 3
4 1
997 =

R

1

wwwww wlo
B R R R R
ENE N
R

% 997 =

4 5
5 9
3

% 997

5 % 997 = (150%10 + 5) % 997 = sos/RM

9

[C R RV RNV}
© v v ©

~— return i-M+1 = 6

4
(3*10 + 1) % 997 = 31
4 % 997 = (31*10 + 4) % 997 = 314

6 7 8 9101112 13 14 15
2 6 535 8 97 9 3
Q

= (314%10 + 1) % 997 = 150

R

% 997 = ((508 + 3%*(997 - 30))*10 + 9) % 997 = 201

2 % 997 = ((201 + 1%(997 - 30))¥10 + 2) % 997 = 715

6 % 997 = ((715 + 4%(997 - 30))*10 + 6) % 997 = 971

6 5 % 997 = ((971 + 1%(997 - 30))*10 + 5) % 997 = 442 .
6 5 3 %997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929 |
6 5 3 5 %997 = ((929 + 9%(997 - 30))*10 + 5) % 997 = 613

NONONN

44

Rabin-Karp analysis

Property 4. Rabin-Karp substring search is extremely likely to be linear-time.
Worst-case. Takes time proportional to MN.

* Inworst case, all substrings hash to same value.

* Then, need to check for match at each text position.

Theory. If Qis asufficiently large random prime (about MN?), then
probability of a false collision is about 1/N = expected running time is linear.

Practice. Choose Q to avoid integer overflow. Under reasonable assumptions,
probability of a collision is about 1/Q = linear in practice.

45

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

algorithm operation count backup space
. o grows
(data structure) guarantee typical ininput? with
brute force MN 11N yes 1
Knuth-Morris-Pratt
v AN 1
(full DEA) 2N 1.11 no MR
Knuth-Morris-Pratt
L AN M
(mismatch transitions only) 3N LIN no :
Boyer-Moore 3N N/M yes R
Boyer-Moore
. L MN N/M
(mismatched character heuristic only) : / yes R
Rabin-Karp" 7N* 7N no 1
 probabilisitic guarantee, with uniform hash function
Cost summary for substring-search implementations

47

Rabin-Karp fingerprint search

Advantages.
 Extends to 2D patterns.
* Extends to finding multiple patterns.

Disadvantages.
 Arithmetic ops slower than char compares.

* No worst-case guarantee.

Q. How would you extend Rabin-Karp to efficiently search for any one of P
possible patterns in a text of length N?

46

