
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 20, 2009 10:34:35 AM

Minimum Spanning Trees

References:
 Algorithms in Java, Chapter 20
 http://www.cs.princeton.edu/algs4/54mst

! weighted graph API

! cycles and cuts

! Kruskal’s algorithm

! Prim’s algorithm

! advanced topics

2

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

MST Origin

23

10

21

14

24

 16

4

18

9

7

11

8

5

6

G

3

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

Brute force. Try all possible spanning trees.

• Problem 1: not so easy to implement.

• Problem 2: far too many of them.

MST Origin

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

23

10

21

14

24

 16

4

18

9

7

11

8

5

6

4

MST is fundamental problem with diverse applications.

• Cluster analysis.

• Max bottleneck paths.

• Real-time face verification.

• LDPC codes for error correction.

• Image registration with Renyi entropy.

• Find road networks in satellite and aerial imagery.

• Reducing data storage in sequencing amino acids in a protein.

• Model locality of particle interactions in turbulent fluid flows.

• Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

• Network design (telephone, electrical, hydraulic, cable, computer, road).

• Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

Applications

http://www.ics.uci.edu/~eppstein/gina/mst.html

5

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Medical image processing

6http://ginger.indstate.edu/ge/gfx

7

Kruskal's algorithm. Consider edges in ascending order of weight.

Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s.

At each step, add to T the edge of min weight that has exactly

one endpoint in T.

Proposition. Both greedy algorithms compute MST.

Two Greedy Algorithms

“ Greed is good. Greed is right. Greed works. Greed
 clarifies, cuts through, and captures the essence of
 the evolutionary spirit. ” — Gordon Gecko

8

! weighted graph API

! cycles and cuts

! Kruskal’s algorithm

! Prim’s algorithm

! advanced topics

9

Edge API

Edge abstraction needed for weighted edges.

 public class Edge implements Comparable<Edge> public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

double weight() the weight

String toString() string representation

v weight w

10

Weighted graph API

 public class WeightedGraph public class WeightedGraph graph data type

WeightedGraph(int V) create an empty graph with V vertices

WeightedGraph(In in) create a graph from input stream

void insert(Edge e) add an edge from v to w

Iterable<Edge> adj(int v) return an iterator over edges incident to v

int V() return number of vertices

String toString() return a string representation

iterate through all edges

(once in each direction)

for (int v = 0; v < G.V(); v++)

{

 for (Edge e : G.adj(v))

 {

 int w = e.other(v);

 // process edge v-w

 }

}

11

public class WeightedGraph

{

 private final int V;

 private final SET<Edge>[] adj;

 public WeightedGraph(int V)

 {

 this.V = V;

 adj = (SET<Edge>[]) new SET[V];

 for (int v = 0; v < V; v++)

 adj[v] = new SET<Edge>();

 }

 public void addEdge(Edge e)

 {

 int v = e.either(), w = e.other(v);

 adj[v].add(e);

 adj[w].add(e);

 }

 public Iterable<Edge> adj(int v)

 { return adj[v]; }

}

Weighted graph: adjacency-set implementation

add edge to both

adjacency sets

constructor

same as Graph, but

adjacency sets of Edges

instead of integers

12

public class Edge implements Comparable<Edge>

{

 private final int v, w;

 private final double weight;

 public Edge(int v, int w, double weight)

 {

 this.v = Math.min(v, w);

 this.w = Math.max(v, w);

 this.weight = weight;

 }

 public int either()

 { return v; }

 public int other(int vertex)

 {

 if (vertex == v) return w;

 else return v;

 }

 public int weight()

 { return weight; }

 // See next slide for compare methods.

}

Weighted edge: Java implementation

constructor

either endpoint

other endpoint

weight of edge

13

Weighted edge: Java implementation (cont)

 public static class ByWeight implements Comparator<Edge>

 {

 public int compare(Edge e, Edge f)

 {

 if (e.weight < f.weight) return -1;

 if (e.weight > f.weight) return +1;

 return 0;

 }

 }

 public int compareTo(Edge that)

 {

 if (this.v < that.v) return -1;

 if (this.v > that.v) return +1;

 if (this.w < that.w) return -1;

 if (this.w > that.w) return +1;

 return 0;

 }

natural order

(for use in a symbol table)

order edges by weight

(for sorting in Kruskal)

14

! weighted graph API

! cycles and cuts

! Kruskal’s algorithm

! Prim’s algorithm

! advanced topics

15

MST. Given connected graph G with positive edge weights,

find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is

connected and acyclic.

Property. MST of G is always a spanning tree.

Spanning tree

16

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge

belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight

edge with exactly one endpoint in S. Then the MST contains e.

f

cycle C

cut S

e is in the MST

e

f is not in the MST

Cycle and cut properties

17

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge

belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

• Suppose f belongs to T*. Let's see what happens.

• Deleting f from T* disconnects T*. Let S be one side of the cut.

• Some other edge in C, say e, has exactly one endpoint in S.

• T = T* ! { e } " { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. !

f

e

S

Cycle property: correctness proof

 MST T*

cycle C

18

Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight

edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

• Suppose e does not belong to T*. Let's see what happens.

• Adding e to T* creates a cycle C in T*.

• Some other edge in C, say f, has exactly one endpoint in S.

• T = T* ! { e } " { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. !

Cut property: correctness proof

f

e

S

 MST T*

cycle C

19

! weighted graph API

! cycles and cuts

! Kruskal’s algorithm

! Prim’s algorithm

! advanced topics

20

25%

50%

75%

100%

Kruskal's algorithm example

21

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order of

weight. Add the next edge to T unless doing so would create a cycle.

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

3-5 0.18

1-7 0.21

6-7 0.25

0-2 0.29

0-7 0.31

0-1 0.32

3-4 0.34

4-5 0.40

4-7 0.46

0-6 0.51

4-6 0.51

0-5 0.60

Kruskal's algorithm

Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 1] Suppose that adding e to T creates a cycle C.

• Edge e is the max weight edge in C.

• Edge e is not in the MST (cycle property).

22

C

e

Kruskal's algorithm: correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 2] Suppose that adding e = (v, w) to T does not create a cycle.

• Let S be the vertices in v’s connected component.

• Vertex w is not in S.

• Edge e is the min weight edge with exactly one endpoint in S.

• Edge e is in the MST (cut property). !

23

v

e

Kruskal's algorithm: correctness proof

S

w

24

Problem. Check if adding an edge (v, w) to T creates a cycle.

How difficult?

• Intractable.

• O(E + V) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

Kruskal implementation challenge

run DFS from v, check if w is reachable

(T has at most V-1 edges)

use the union-find data structure !

25

Problem. Check if adding an edge (v, w) to T creates a cycle.

Efficient solution. Use the union-find data structure.

• Maintain a set for each connected component in T.

• If v and w are in same component, then adding v-w creates a cycle.

• To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge setsCase 1: adding v-w creates a cycle

Kruskal's algorithm implementation

v w

w

v

sort edges by weight

26

Kruskal's algorithm: Java implementation

public class Kruskal

{

 private SET<Edge> mst = new SET<Edge>();

 public Kruskal(WeightedGraph G)

 {

 Edge[] edges = G.edges();

 Arrays.sort(edges, new Edge.ByWeight());

 UnionFind uf = new UnionFind(G.V());

 for (Edge e : edges)

 {

 int v = e.either(), w = e.other(v);

 if (!uf.find(v ,w))

 {

 uf.unite(v, w);

 mst.add(edge);

 }

 }

 }

 public Iterable<Edge> mst()

 { return mst; }

}

greedily add edges to MST

get all edges in graph

27

Proposition. Kruskal's algorithm computes MST in O(E log V) time.

Pf.

Remark. If edges are already sorted, time is proportional to E log* V.

† amortized bound using weighted quick union with path compression

Kruskal's algorithm running time

recall: log* V # 5 in this universe

operation frequency time per op

sort 1 E log V

union V log* V †

find E log* V †

28

! weighted graph API

! cycles and cuts

! Kruskal’s algorithm

! Prim’s algorithm

! advanced topics

29

25%

50%

75%

100%

Prim's algorithm example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Start with vertex 0 and greedily grow tree T. At each step,

add edge of min weight that has exactly one endpoint in T.

30

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-4 0-6 0-5 7-6 7-4 0-6 0-5

7-4 0-5 6-4 4-3 4-5 0-5 3-5 4-5 0-5

edges with exactly one endpoint in T, sorted by weight

Proposition. Prim's algorithm computes the MST.

Pf.

• Let S be the subset of vertices in current tree T.

• Prim adds the min weight edge e with exactly one endpoint in S.

• Edge e is in the MST (cut property). !

31

Prim's algorithm correctness proof

S e

32

Problem. Find min weight edge with exactly one endpoint in S.

How difficult?

• Intractable.

• O(E) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

Prim implementation challenge

try all edges

use a priority queue !

S e

33

Problem. Find min weight edge with exactly one endpoint in S.

Efficient solution. Maintain a PQ of vertices connected by an edge to S.

• Delete min to determine next vertex v to add to S.

• Disregard v if already in S.

• Add to PQ any vertex brought closer to S by v.

Running time.

• log E steps per edge.

• E log E steps overall.

Prim's algorithm implementation

S e

34

Associate a value with each key in a priority queue.

Implementation.

• Start with same code as standard heap-based PQ.

• Use a parallel array vals[] (value associated with keys[i] is vals[i]).

• Modify exch() to maintain parallel arrays (do exch in vals[]).

• Modify delMin() to return Value.

Key-value priority queue

 public class MinPQplus<Key extends Comparable<Key>, Value> public class MinPQplus<Key extends Comparable<Key>, Value> public class MinPQplus<Key extends Comparable<Key>, Value>

MinPQplus() create key-value priority queue

void put(Key key, Value val) put key-value pair into the PQ

Value delMin() return value paired with

minimal key and delete it

boolean isEmpty() is the PQ empty?

Use PQ: key = edge weight, value = vertex.

(lazy version leaves some obsolete entries on the PQ)

35

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example: lazy implementation

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1

7-4 0-6 0-5

7-6 0-1 7-4

0-6 0-5

0-1 7-4 0-6 0-5 4-3 4-5 0-6 0-5 3-5 4-5 0-6 0-5

blue = PQ value (vertex)

gray = obsolete entry (multiple entries with same value or vertex already in S)

public class LazyPrim

{

 private boolean[] marked; // vertices in MST

 private double[] dist; // distance to MST

 private Edge[] pred; // pred[v] is edge attach v to MST

 public LazyPrim(WeightedGraph G)

 {

 marked = new boolean[G.V()];

 pred = new Edge[G.V()];

 dist = new double[G.V()];

 for (int v = 0; v < G.V(); v++)

 dist[v] = Double.POSITIVE_INFINITY;

 prim(G, 0);

 }

 // See next slide for prim() implementation.

}

36

Lazy implementation of Prim's algorithm

37

Lazy implementation of Prim's algorithm

private void prim(WeightedGraph G, int s)

{

 dist[s] = 0.0;

 marked[s] = true;

 MinPQplus<Double, Integer> pq;

 pq = new MinPQplus<Double, Integer>();

 pq.put(dist[s], s);

 while (!pq.isEmpty())

 {

 int v = pq.delMin();

 if (marked[v]) continue;

 marked[v] = true;

 for (Edge e : G.adj(v))

 {

 int w = e.other(v);

 if (!marked[w] && (dist[w] > e.weight()))

 {

 dist[w] = e.weight();

 pred[w] = e;

 pq.insert(dist[w], w);

 }

 }

 }

}

key-value PQ

ignore if already in MST

add to PQ any vertices

brought closer to S by v

38

Proposition. Prim's algorithm computes MST in O(E log V) time.

Prim's algorithm running time

operation frequency time per op

delmin V V log V

insert E E log V

Indexed priority queue.

Implementation. More complicated than MinPQ, see text.

39

Priority queue with decrease-key

 public class MinIndexPQ<Key extends Comparable<Key>, Integer> public class MinIndexPQ<Key extends Comparable<Key>, Integer> public class MinIndexPQ<Key extends Comparable<Key>, Integer>

MinIndexPQ() create key-value indexed priority queue

void put(Key key, int v) put key-value pair into the PQ

int delMin() return value paired with

minimal key and delete it

boolean isEmpty() is the PQ empty?

boolean contains(int v) is there a key associated with value v?

void decreaseKey(Key key, int v) decrease the key associated with v to key

Use IndexMinPQ: key = edge weight, value = vertex.

(eager version has at most one PQ entry per vertex)

40

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example: eager implementation

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 7-4 0-5 7-6 7-4 0-5

7-4 0-5 4-3 4-5 3-5

blue = PQ value (vertex)

Main benefit. Reduces PQ size guarantee from E to V.

• Not important for the huge sparse graphs found in practice.

• PQ size is far smaller in practice.

• Widely used, but practical utility is debatable.

41

Eager implementation of Prim's algorithm

42

Simplifying assumption. All edge weights we are distinct.

Approach 1. Introduce tie-breaking rule for compare().

Approach 2. Prim and Kruskal still find MST if equal weights!

(only our proof of correctness fails)

public int compare(Edge e, Edge f)

{

 if (e.weight < f.weight) return -1;

 if (e.weight > f.weight) return +1;

 if (e.v < f.v) return -1;

 if (e.v > f.v) return +1;

 if (e.w < f.w) return -1;

 if (e.w > f.w) return +1;

 return 0;

}

Removing the distinct edge weight assumption

return e.compareTo(f);

43

! weighted graph API

! cycles and cuts

! Kruskal’s algorithm

! Prim’s algorithm

! advanced topics

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

44

deterministic compare-based MST algorithms

Does a linear-time MST algorithm exist?

year worst case discovered by

1975 E log log V Yao

1976 E log log V Cheriton-Tarjan

1984 E log* V, E + V log V Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

1997 E "(V) log "(V) Chazelle

2000 E "(V) Chazelle

2002 optimal Pettie-Ramachandran

20xx E ???

