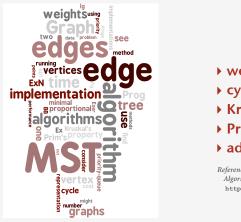
Minimum Spanning Trees



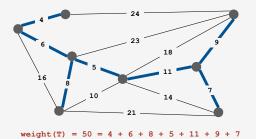
weighted graph API
cycles and cuts
Kruskal's algorithm
Prim's algorithm
advanced topics

Algorithms in Java, Chapter 20 http://www.cs.princeton.edu/algs4/54mst

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 20, 2009 10:34:35 AM

MST Origin

- Given. Undirected graph G with positive edge weights (connected).
- Goal. Find a min weight set of edges that connects all of the vertices.



Brute force. Try all possible spanning trees.

- Problem 1: not so easy to implement.
- Problem 2: far too many of them.

Applications

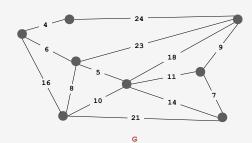
MST is fundamental problem with diverse applications.

- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Network design (telephone, electrical, hydraulic, cable, computer, road).
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

http://www.ics.uci.edu/~eppstein/gina/mst.html

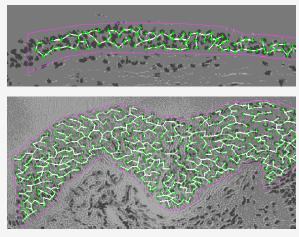
MST Origin

- Given. Undirected graph G with positive edge weights (connected).
- Goal. Find a min weight set of edges that connects all of the vertices.



Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research



http://www.bccrc.ca/ci/ta01_archlevel.html

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of weight. Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s. At each step, add to T the edge of min weight that has exactly one endpoint in T.

"Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit. " — Gordon Gecko

weighted graph API

- cycles and cuts
- Kruskal's algorithm
- Prim's algorithm
- advanced topics

Proposition. Both greedy algorithms compute MST.

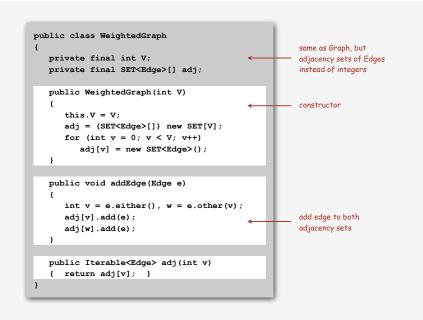
Edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable <edge></edge>			
	Edge(int v, int w, double weight)	create a weighted edge v-w	
int	either()	either endpoint	
int	other(int v)	the endpoint that's not v	
double	weight()	the weight	
String	toString()	string representation	

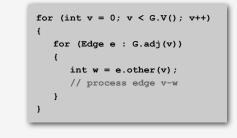
v _____ weight _____w

Weighted graph: adjacency-set implementation



Weighted graph API

public class	WeightedGraph	graph data type
	WeightedGraph(int V)	create an empty graph with V vertices
	WeightedGraph(In in)	create a graph from input stream
void	insert(Edge e)	add an edge from v to w
Iterable <edge></edge>	adj(int v)	return an iterator over edges incident to v
int	V()	return number of vertices
String	toString()	return a string representation

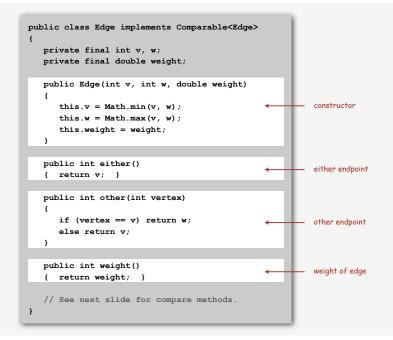


iterate through all edges (once in each direction)

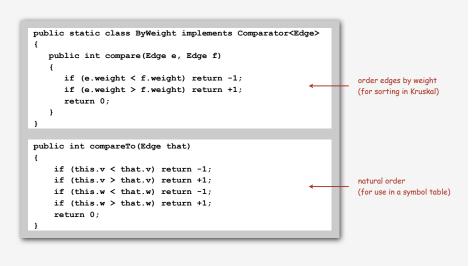
10

12

Weighted edge: Java implementation



Weighted edge: Java implementation (cont)



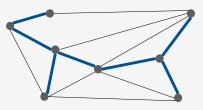
cycles and cuts

- ruskal's algorithm
- Prim's algorithm
- advanced topics

Spanning tree

MST. Given connected graph G with positive edge weights, find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is connected and acyclic.



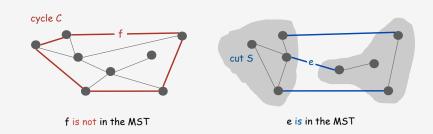
Property. MST of G is always a spanning tree.

Cycle and cut properties

Simplifying assumption. All edge weights w_e are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight edge with exactly one endpoint in S. Then the MST contains e.



13

14

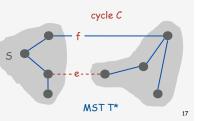
Cycle property: correctness proof

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

- Suppose f belongs to T*. Let's see what happens.
- Deleting f from T* disconnects T*. Let S be one side of the cut.
- Some other edge in C, say e, has exactly one endpoint in S.
- $T = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since w_e < w_f, weight(T) < weight(T*).
- Contradicts minimality of T*. •



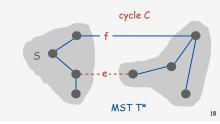
Cut property: correctness proof

Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

- Suppose e does not belong to T*. Let's see what happens.
- Adding e to T* creates a cycle C in T*.
- Some other edge in C, say f, has exactly one endpoint in S.
- $T = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since w_e < w_f, weight(T) < weight(T*).
- Contradicts minimality of T*. •

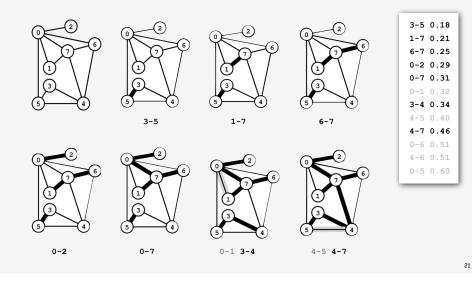


Kruskal's algorithm example

	25%		75%
➤ cycles and cuts			
 Kruskal's algorithm Prim's algorithm advanced topics 	50%	the standard of the standard o	100%

Kruskal's algorithm

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order of weight. Add the next edge to T unless doing so would create a cycle.

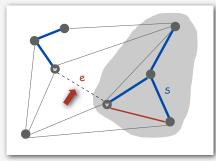


Kruskal's algorithm: correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 2] Suppose that adding e = (v, w) to T does not create a cycle.

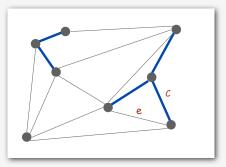
- Let S be the vertices in v's connected component.
- Vertex w is not in S.
- Edge e is the min weight edge with exactly one endpoint in S.
- Edge e is in the MST (cut property).



Kruskal's algorithm: correctness proof

Proposition. Kruskal's algorithm computes the MST.

- Pf. [Case 1] Suppose that adding e to T creates a cycle C.
- Edge e is the max weight edge in C.
- Edge e is not in the MST (cycle property).

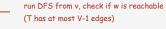


Kruskal implementation challenge

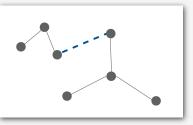
Problem. Check if adding an edge (v, w) to T creates a cycle.

How difficult?

- Intractable.
- O(E + V) time.
- O(V) time.
- O(log V) time.
 O(log* V) time.



- use the union-find data structure !
- Constant time.



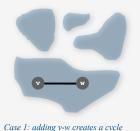
Kruskal's algorithm implementation

Kruskal's algorithm: Java implementation

Problem. Check if adding an edge (v, w) to T creates a cycle.

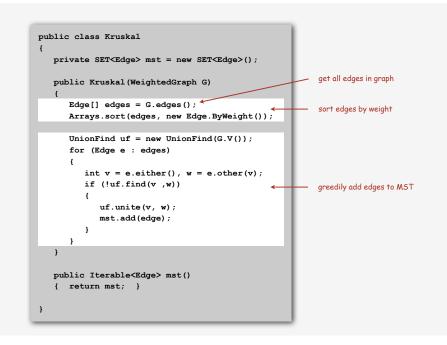
Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same component, then adding v-w creates a cycle.
- To add v-w to T, merge sets containing v and w.



Case 2: add v-w to T and merge sets

25



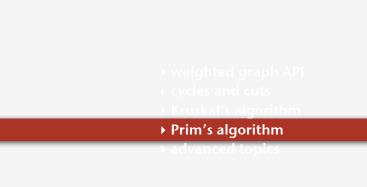
Kruskal's algorithm running time

Proposition. Kruskal's algorithm computes MST in O(E log V) time.

Pf.

operation	frequency	time per op
sort	1	E log V
union	V	log* V †
find	E	log* V †

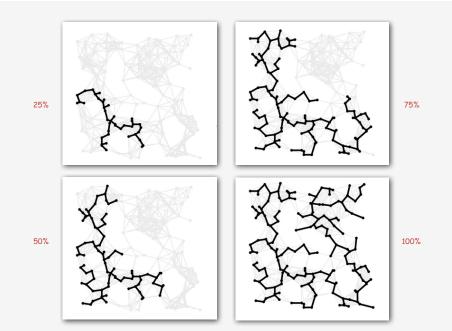
 $\ensuremath{^+}$ amortized bound using weighted quick union with path compression



Remark. If edges are already sorted, time is proportional to E log* V.

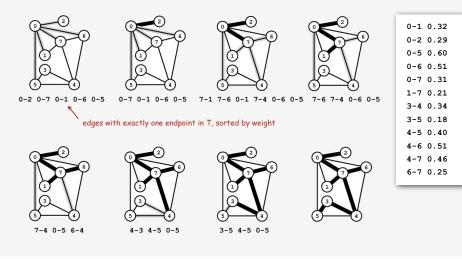
recall: $\log^* V \leq 5$ in this universe

Prim's algorithm example



Prim's algorithm example

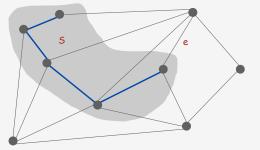
Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959] Start with vertex 0 and greedily grow tree T. At each step, add edge of min weight that has exactly one endpoint in T.



Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST. Pf.

- Let S be the subset of vertices in current tree T.
- Prim adds the min weight edge e with exactly one endpoint in S.
- Edge e is in the MST (cut property).

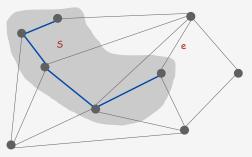


Prim implementation challenge

Problem. Find min weight edge with exactly one endpoint in S.

How difficult?

- Intractable.
- O(V) time.
- O(log* V) time.
- Constant time.



29

30

Prim's algorithm implementation

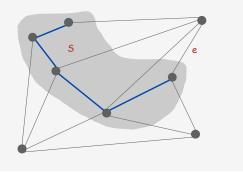
Problem. Find min weight edge with exactly one endpoint in S.

Efficient solution. Maintain a PQ of vertices connected by an edge to S.

- Delete min to determine next vertex v to add to S.
- Disregard v if already in S.
- Add to PQ any vertex brought closer to S by v.

Running time.

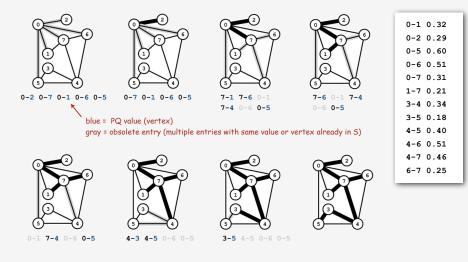
- log E steps per edge.
- E log E steps overall.



Prim's algorithm example: lazy implementation

Use PQ: key = edge weight, value = vertex.

(lazy version leaves some obsolete entries on the PQ)



Key-value priority queue

Associate a value with each key in a priority queue.

public class	MinPQplus <key comparable<key="" extends="">, Value></key>		
	MinPQplus()	create key-value priority queue	
void	put(Key key, Value val)	put key-value pair into the PQ	
Value	delMin()	return value paired with minimal key and delete it	
boolean	isEmpty()	is the PQ empty?	

Implementation.

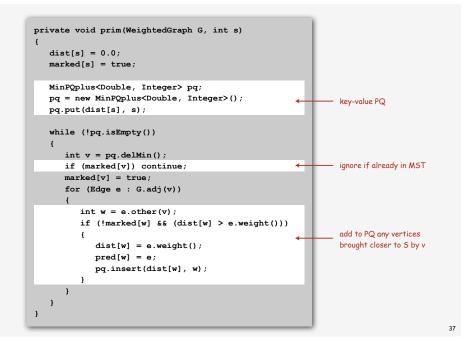
- Start with same code as standard heap-based PQ.
- Use a parallel array vals[] (value associated with keys[i] is vals[i]).
- Modify exch() to maintain parallel arrays (do exch in vals[]).
- Modify delMin() to return value.

Lazy implementation of Prim's algorithm

pu {	blic class LazyPrim				
	<pre>private boolean[] marked; private double[] dist; private Edge[] pred;</pre>				
	<pre>public LazyPrim(WeightedGr {</pre>	aph G)			
	marked = new boolean[G.	V()];			
	<pre>pred = new Edge[G.V()];</pre>				
	dist = new double[G.V()];				
	for (int $v = 0; v < G.V(); v++$)				
	dist[v] = Double.POSITIVE_INFINITY;				
	prim(G, 0);				
	}				
}	<pre>// See next slide for prim</pre>	() implementation.			

33

Lazy implementation of Prim's algorithm



Prim's algorithm running time

Proposition. Prim's algorithm computes MST in O(E log V) time.

operation	frequency	time per op
delmin	V	V log V
insert	E	E log V

Priority queue with decrease-key

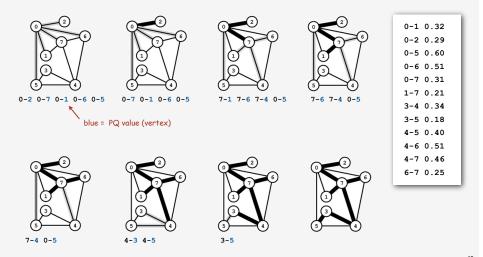
Indexed priority queue.

public class	MinIndexPQ <key compa<="" extends="" th=""><th>rable<key>, Integer></key></th></key>	rable <key>, Integer></key>
	MinIndexPQ()	create key-value indexed priority queue
void	put(Key key, int v)	put key-value pair into the PQ
int	delMin()	return value paired with minimal key and delete it
boolean	isEmpty()	is the PQ empty?
boolean	contains(int v)	is there a key associated with value v?
void	decreaseKey(Key key, int v)	decrease the key associated with v to key

Implementation. More complicated than MinPQ, see text.

Prim's algorithm example: eager implementation

Use IndexMinPQ: key = edge weight, value = vertex. (eager version has at most one PQ entry per vertex)



Eager implementation of Prim's algorithm

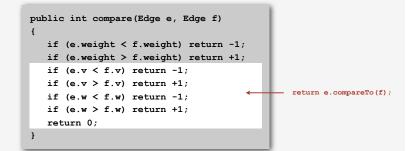
Main benefit. Reduces PQ size guarantee from E to V.

- Not important for the huge sparse graphs found in practice.
- PQ size is far smaller in practice.
- Widely used, but practical utility is debatable.

Removing the distinct edge weight assumption

Simplifying assumption. All edge weights we are distinct.

Approach 1. Introduce tie-breaking rule for compare().



Approach 2. Prim and Kruskal still find MST if equal weights! (only our proof of correctness fails)

4

Does a linear-time MST algorithm exist?

year	worst case	discovered by
1975	E log log V	Υαο
1976	E log log V	Cheriton-Tarjan
1984	E log* V, E + V log V	Fredman-Tarjan
1986	E log (log* V)	Gabow-Galil-Spencer-Tarjan
1997	E α(V) log α(V)	Chazelle
2000	Ε α(V)	Chazelle
2002	optimal	Pettie-Ramachandran
20xx	E	333

deterministic compare-based MST algorithms

- weighted graph APL
- cycles and cuts
- Kruskal's algorithm
 - rim s'algoriti

advanced topics

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).