Balanced Trees twobottom 2-3 Black^{three} transformations new To 2-nodes link ▶ 2-3 trees red-black trees Trees inst ke **B**-trees red-blac Balanced e code search insert Reference: middle insertion case nodes links² Algorithms in Java. 4th Edition, Section 3.2 http://www.cs.princeton.edu/algs4 height root Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License.

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · January 30, 2009 11:04:09 AM

Symbol table review

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
Goal	log N	log N	log N	log N	log N	log N	yes	compareTo()

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black trees, B-trees.

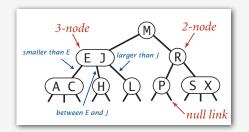
introduced to the world in COS 226, Fall 2007 (see handout)

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

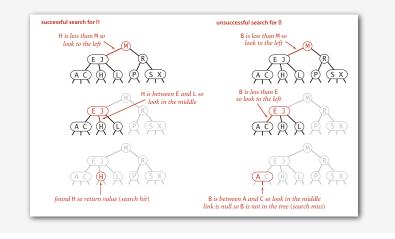


> 2-3 trees

D 4.....

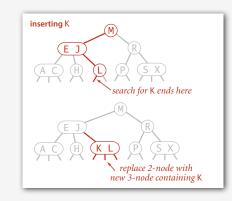
Search in a 2-3 tree

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

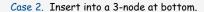


Insertion in a 2-3 tree

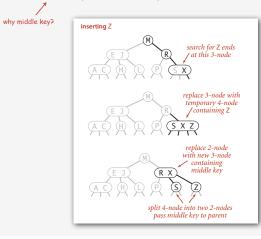
- Case 1. Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.



Insertion in a 2-3 tree



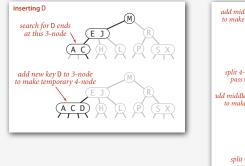
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

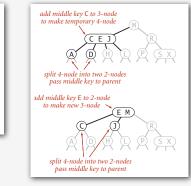


Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

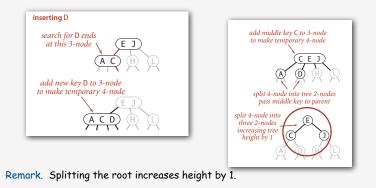
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.





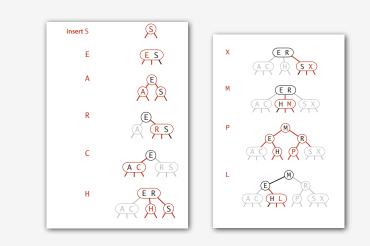
Insertion in a 2-3 tree

- Case 2. Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.



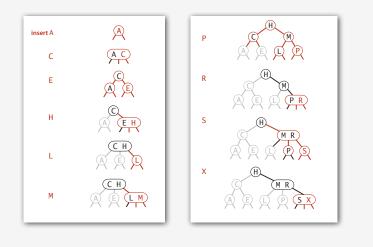
2-3 tree construction trace

Standard indexing client.



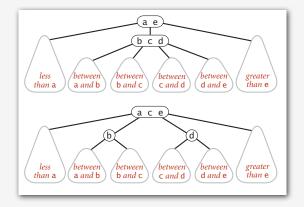
2-3 tree construction trace

The same keys inserted in ascending order.



Local transformations in a 2-3 tree

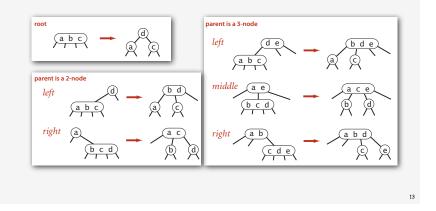
Splitting a 4-node is a local transformation: constant number of steps.



Global properties in a 2-3 tree

Invariant. Symmetric order. Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.



2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

[all 2-nodes]

Tree height.

- Worst case: Ig N.
- Best case: log₃ N ≈ .631 lg N. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()

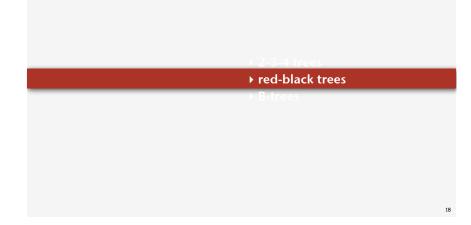
14

2-3 tree: implementation?

Direct implementation is complicated, because:

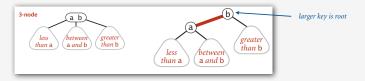
- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

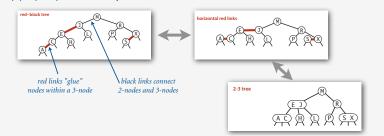


Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

- 1. Represent 2-3 tree as a BST.
- 2. Use "internal" left-leaning links as "glue" for 3-nodes.



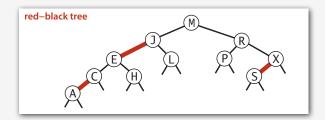
Key property. 1-1 correspondence between 2-3 and LLRB.

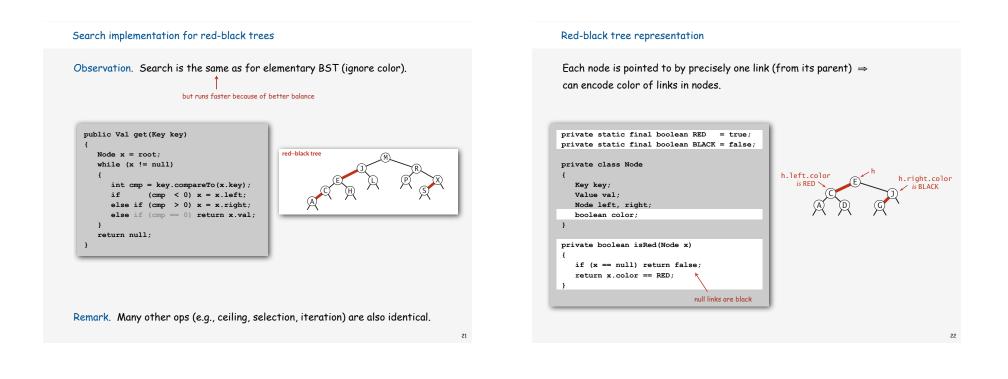


An equivalent definition

- A BST such that:
- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

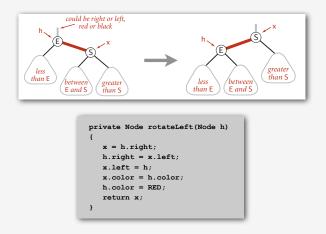
"perfect black balance"





Elementary red-black tree operations

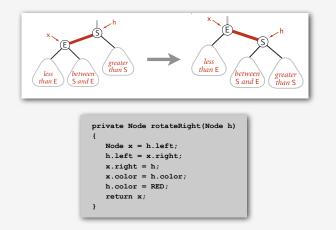
Left rotation. Orient a (temporarily) right-leaning red link to lean left.



Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black tree operations

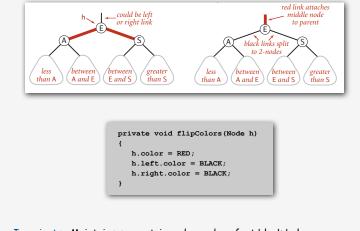
Right rotation. Orient a left-leaning red link to (temporarily) lean right.



Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black tree operations

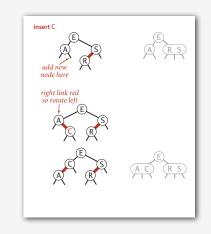
Color flip. Recolor to split a (temporary) 4-node.



Invariants. Maintains symmetric order and perfect black balance.

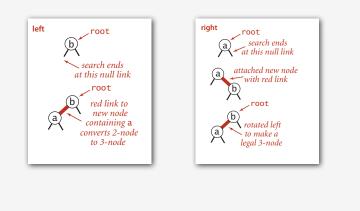
Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black tree operations



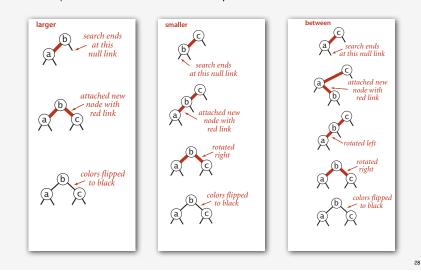
Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.



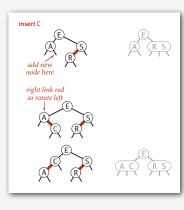
Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.



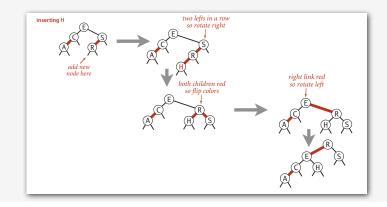
Insertion in a LLRB tree

- Case 1. Insert into a 2-node at the bottom.
- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.



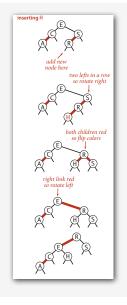
Insertion in a LLRB tree

- Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).



Insertion in a LLRB tree

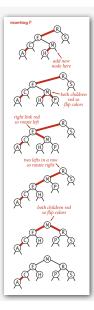
- Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).



31

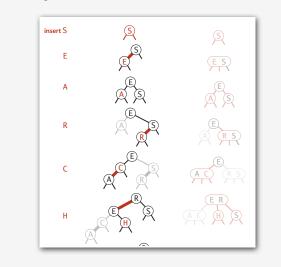
Insertion in a LLRB tree: passing red links up the tree

- Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat Case 1 or Case 2 up the tree (if needed).



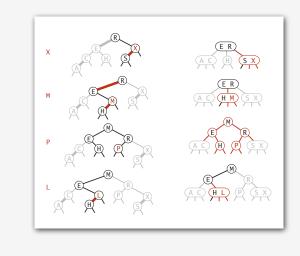
LLRB tree construction trace

Standard indexing client.



LLRB tree construction trace

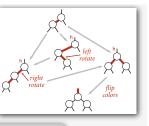
Standard indexing client (continued).



Insertion in a LLRB tree: Java implementation

Same code for both cases.

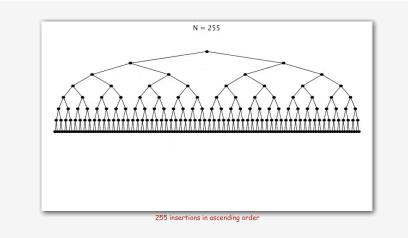
- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.



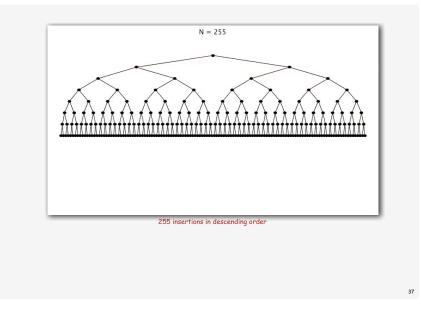
33

pr {	rivate Node put(Node	h, Key key, Value va	1)		
	if (h == null) ret	urn new Node(key, val	, RED);	<	 insert at bottom
	int cmp = key.comp	areTo(h.key);			
	if (cmp < 0)	h.left = put(h.left,	<pre>key, val);</pre>		
	else if $(cmp > 0)$	h.right = put(h.right	, key, val);		
	<pre>else h.val = val;</pre>				
	if (isRed(h.right)	&& !isRed(h.left))	<pre>h = rotateLeft(h);</pre>	*	- lean left
	if (isRed(h.left)	&& isRed(h.left.left)) h = rotateRight(h);	←	- balance 4-node
	if (isRed(h.left)	&& isRed(h.right))	h = flipColors(h);	←	- split 4-node
1	return h;	only a few extra lines of co			
,		to provide near-perfect bala	nce		

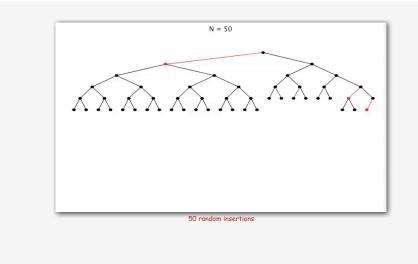
Insertion in a LLRB tree: visualization



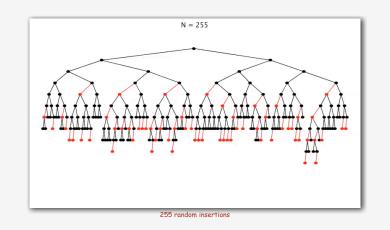
Insertion in a LLRB tree: visualization



Insertion in a LLRB tree: visualization



Insertion in a LLRB tree: visualization

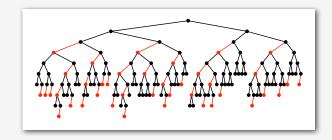


Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \text{ Ig N}$ in the worst case.

Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.



Property. Height of tree is ~ 1.00 lg N in typical applications.

ST implementations: summary

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	Ν	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	Ν	lg N	N/2	N/2	yes	compareTo(
BST	N	N	Ν	1.39 lg N	1.39 lg N	?	yes	compareTo(
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo(
red-black tree	2 lg N	2 lg N	2 lg N	1.00 lg N *	1.00 lg N *	1.00 lg N *	yes	compareTo(

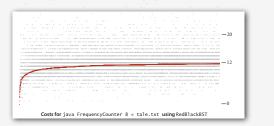
\star exact value of coefficient unknown but extremely close to 1

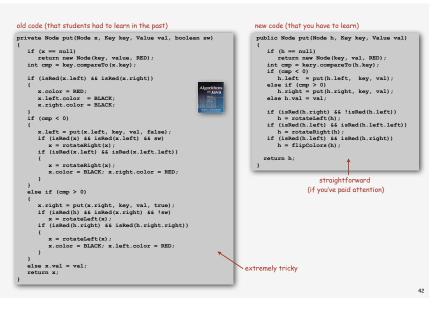
2008

1978

1972

43





Why left-leaning trees?

Why left-leaning trees?

Simplified code.

- Left-leaning restriction reduces number of cases.
- Short inner loop.

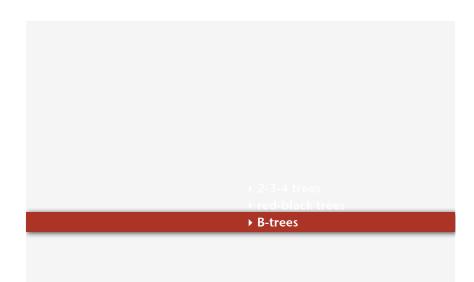
Same ideas simplify implementation of other operations.

- Delete min/max.
- Arbitrary delete.

Improves widely-used algorithms.

- AVL trees, 2-3 trees, 2-3-4 trees.
- Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest balanced BST to implement and the fastest in practice.



File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk). Probe. First access to a page (e.g., from disk to memory).

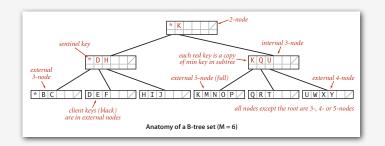
Model. Time required for a probe is much larger than time to accessdata within a page.

Goal. Access data using minimum number of probes.

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M links per node.

- At least 1 entry at root.
- At least M/2 links in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

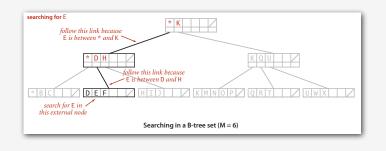


choose M as large as possible so

that M links fit in a page, e.g., M = 1000

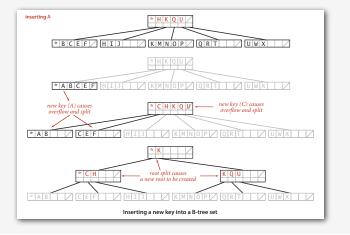
Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.



Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split (M+1)-nodes on the way up the tree.



Balance in B-tree

Probes. A search or insert in a B-tree of order M with N items requires between $log_M N$ and $log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between M/2 and M links.

In practice. Number of probes is at most 4!

Optimization. Always keep root page in memory.

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS.
- Mac: HFS, HFS+.
- · Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Red-black trees in the wild

Common sense. Sixth sense. Together they're the FBI's newest team.

Red-black trees in the wild

