
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · January 30, 2009 10:19:29 AM

Quicksort

! quicksort

! selection

! duplicate keys

! system sorts

Except as otherwise noted, the content of this presentation
is licensed under the Creative Commons Attribution 2.5 License.

Reference:
 Algorithms in Java. 4th Edition, Section 3.2

 http://www.cs.princeton.edu/algs4

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

last lecture

this lecture

! quicksort
! selection
! duplicate keys
! system sorts

3 4

Quicksort

Basic plan.

• Shuffle the array.

• Partition so that, for some i

- element a[i] is in place

- no larger element to the left of i

- no smaller element to the right of i

• Sort each piece recursively.
Sir Charles Antony Richard Hoare

1980 Turing Award

Q U I C K S O R T E X A M P L E

K R A T E E L P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning element

input

shu!e

partition

sort left

sort right

result

Quicksort overview

Quicksort partitioning

Basic plan.

• Scan from left for an item that belongs on the right.

• Scan from right for item item that belongs on the left.

• Exchange.

• Continue until pointers cross.

5

 a[i]
 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1 15 K R A T E L E P U I M Q C X O S

 1 12 K R A T E L E P U I M Q C X O S

 1 12 K C A T E L E P U I M Q R X O S

 3 9 K C A T E L E P U I M Q R X O S

 3 9 K C A I E L E P U T M Q R X O S

 7 6 K C A I E L E P U T M Q R X O S

 7 6 K C A I E E L P U T M Q R X O S

 7 6 K C A I E E L P U T M Q R X O S

 7 6 E C A I E K L P U T M Q R X O S

 E C A I E K L P U T M Q R X O S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

!nal exchange

result

v

6

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)

{

 int i = lo, j = hi+1;

 while(true)

 {

 while (less(a[++i], a[lo]))

 if (i == hi) break;

 while (less(a[lo], a[--j]))

 if (j == lo) break;

 if (i >= j) break;

 exch(a, i, j);

 }

 exch(a, lo, j);

 return j;

}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

7

Quicksort: Java implementation

public class Quick

{

 public static void sort(Comparable[] a)

 {

 StdRandom.shuffle(a);

 sort(a, 0, a.length - 1);

 }

 private static void sort(Comparable[] a, int lo, int hi)

 {

 if (hi <= lo) return;

 int j = partition(a, lo, hi);

 sort(a, lo, j-1);

 sort(a, j+1, hi);

 }

}

Quicksort trace

8

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E E L P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 2 4 A C E I E K L P U T M Q R X O S
 0 0 1 A C E I E K L P U T M Q R X O S
 1 1 A C E I E K L P U T M Q R X O S
 3 4 4 A C E E I K L P U T M Q R X O S
 3 3 A C E E I K S P U T M Q L X O R
 6 12 15 A C E E I K L P O R M Q S X U T
 6 10 11 A C E E I K L P O M Q R S X U T
 6 7 9 A C E E I K L M O P Q R S X U T
 6 6 A C E E I K L M O P Q R S X U T
 8 9 9 A C E E I K L M O P Q R S X U T
 8 8 A C E E I K L M O P Q R S X U T
 11 11 A C E E I K L M O P Q R S X U T
 13 13 15 A C E E I K L M O P Q R S T U X
 14 15 15 A C E E I K L M O P Q R S T U X
 14 14 A C E E I K L M O P Q R S T U X
 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shu!e

result

Quicksort trace (array contents after each partition)

Quicksort animation

9

j

i

v

done

first partition

second partition

10

Quicksort animation

11

Quicksort: implementation details

Partitioning in-place. Using a spare array makes partitioning easier

(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier

than it might seem.

Staying in bounds. The (i == hi) test is redundant,

but the (j == lo) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best

to stop on elements equal to the partitioning element.

12

Quicksort: empirical analysis

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.3 sec 6 min

super instant 1 second 1 week instant instant instant instant instant instant

Proposition I. The average number of compares CN to quicksort an array of N

elements is ~ 2N ln N (and the number of exchanges is ~ ! N ln N).

Pf. CN satisfies the recurrence C0 = C1 = 0 and for N ! 2:

• Multiply both sides by N and collect terms:

• Subtract this from the same equation for N-1:

• Rearrange terms and divide by N(N+1):

13

Quicksort: average-case analysis

partitioning right partitioning probabilityleft

CN

N + 1
=

CN−1

N
+

2
N + 1

NCN − (N − 1)CN = 2N + 2CN−1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN−1)

CN = (N + 1) +
C0 + C1 + . . . + CN−1

N
+

CN−1 + CN−2 + . . . + C0

N

CN

N + 1
=

CN−1

N
+

2
N + 1

=
CN−2

N − 1
+

2
N

+
2

N + 1

=
CN−3

N − 2
+

2
N − 1

+
2
N

+
2

N + 1

=
2
1

+
2
2

+
2
3

+ . . . +
2

N + 1

• Repeatedly apply above equation:

• Approximate by an integral:

• Finally, the desired result:

14

Quicksort: average-case analysis

CN ∼ 2(N + 1)
(

1 +
1
2

+
1
3

+ . . .
1
N

)

∼ 2(N + 1)
∫ N

1

1
x

dx

CN ∼ 2(N + 1) lnN ≈ 1.39N lg N

previous equation

15

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

• N + (N-1) + (N-2) + … + 1 ~ N2 / 2.

• More likely that your computer is struck by lightning.

Average case. Number of compares is ~ 1.39 N lg N.

• 39% more compares than mergesort.

• But faster than mergesort in practice because of less data movement.

Random shuffle.

• Probabilistic guarantee against worst case.

• Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if input:

• Is sorted or reverse sorted

• Has many duplicates (even if randomized!) [stay tuned]

16

Quicksort: practical improvements

Median of sample.

• Best choice of pivot element = median.

• Estimate true median by taking median of sample.

Insertion sort small files.

• Even quicksort has too much overhead for tiny files.

• Can delay insertion sort until end.

Optimize parameters.

• Median-of-3 random elements.

• Cutoff to insertion sort for " 10 elements.

Non-recursive version.

• Use explicit stack.

• Always sort smaller half first.

guarantees O(log N) stack size

~ 12/7 N ln N comparisons

Quicksort with cutoff to insertion sort: visualization

17

partitioning element

Quicksort with median-of-3 partitioning and cuto! for small sub"les

input

result

result of
"rst partition

left sub"le
partially sorted

both sub"les
partially sorted

! quicksort
! selection
! duplicate keys
! system sorts

18

19

Selection

Goal. Find the kth largest element.

Ex. Min (k = 0), max (k = N-1), median (k = N/2).

Applications.

• Order statistics.

• Find the “top k.”

Use theory as a guide.

• Easy O(N log N) upper bound.

• Easy O(N) upper bound for k = 1, 2, 3.

• Easy #(N) lower bound.

Which is true?

• #(N log N) lower bound?

• O(N) upper bound?

is selection as hard as sorting?

is there a linear-time algorithm for all k?

Partition array so that:

• Element a[i] is in place.

• No larger element to the left of i.

• No smaller element to the right of i.

Repeat in one subarray, depending on i; finished when i equals k.

20

Quick-select

public static Comparable select(Comparable[] a, int k)

{

 StdRandom.shuffle(a);

 int lo = 0, hi = a.length - 1;

 while (hi > lo)

 {

 int i = partition(a, lo, hi);

 if (i < k) lo = i + 1;

 else if (i > k) hi = i - 1;

 else return a[k];

 }

 return a[k];

}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here

set hi to i-1

if a[k] is here

set lo to i+1

21

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

• Intuitively, each partitioning step roughly splits array in half:

N + N/2 + N/4 + … + 1 ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Ex. (2 + 2 ln 2) N compares to find the median.

Remark. Quick-select might use ~ N2/2 compares, but as with quicksort,

the random shuffle provides a probabilistic guarantee.

CN = 2 N + k ln (N / k) + (N - k) ln (N / (N - k))

22

Theoretical context for selection

Challenge. Design algorithm whose worst-case running time is linear.

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a

compare-based selection algorithm whose worst-case running time is linear.

Remark. But, algorithm is too complicated to be useful in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.

• Until one is discovered, use quick-select if you don’t need a full sort.

23

Generic methods

In our select() implementation, client needs a cast.

The compiler also complains.

Q. How to fix?

 % javac Quick.java

 Note: Quick.java uses unchecked or unsafe operations.

 Note: Recompile with -Xlint:unchecked for details.

 Double[] a = new Double[N];

 for (int i = 0; i < N; i++)

 a[i] = StdRandom.uniform();

 Double median = (Double) Quick.select(a, N/2);
hazardous cast

required

24

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

public class Quick

{

 public static <Key extends Comparable<Key>> Key select(Key[] a, int k)

 { /* as before */ }

 public static <Key extends Comparable<Key>> void sort(Key[] a)

 { /* as before */ }

 private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)

 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)

 { /* as before */ }

 private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)

 { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

}

generic type variable

(value inferred from argument a[])

return type matches array type

can declare variables of generic type

! quicksort
! selection
! duplicate keys
! system sorts

25 26

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge file.

• Small number of key values.

see Assignment 3

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

27

Duplicate keys

Mergesort with duplicate keys. Always ~ N lg N compares.

Quicksort with duplicate keys.

• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system implementations

also have this defect

S T O P O N E Q U A L K E Y S

swap swap

Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side.

Consequence. ~ N2 / 2 compares when all keys equal.

Recommended. Stop scans on keys equal to the partitioning element.

Consequence. ~ N lg N compares when all keys equal.

Desirable. Put all keys equal to the partitioning element in place.

28

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into 3 parts so that:

• Elements between lt and gt equal to partition element v.

• No larger elements to left of lt.

• No smaller elements to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

• Convention wisdom until mid 1990s: not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.

29

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

30

3-way partitioning: Dijkstra's solution

3-way partitioning.

• Let v be partitioning element a[lo].

• Scan i from left to right.

- a[i] less than v : exchange a[lt] with a[i] and increment both lt and i

- a[i] greater than v : exchange a[gt] with a[i] and decrement gt

- a[i] equal to v : increment i

All the right properties.

• In-place.

• Not much code.

• Small overhead if no equal keys.

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

31

3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

private static void sort(Comparable[] a, int lo, int hi)

{

 if (hi <= lo) return;

 int lt = lo, gt = hi;

 Comparable v = a[lo];

 int i = lo;

 while (i <= gt)

 {

 int cmp = a[i].compareTo(v);

 if (cmp < 0) exch(a, lt++, i++);

 else if (cmp > 0) exch(a, i, gt--);

 else i++;

 }

 sort(a, lo, lt - 1);

 sort(a, gt + 1, hi);

}

32

3-way quicksort: Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

33

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

34

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the ith smallest one

occurs xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997]

Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running

time from linearithmic to linear in broad class of applications.

−
n∑

i=1

xi lg
xi

N
N lg N when all distinct;

linear when only a constant number of distinct keys

! selection
! duplicate keys
! comparators
! system sorts

35

Sorting algorithms are essential in a broad variety of applications:

• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS news items in reverse chronological order.

• Find the median.

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics.

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.

. . .

Every system needs (and has) a system sort!
36

obvious applications

problems become easy once items

are in sorted order

non-obvious applications

Sorting applications

37

Java system sorts

Java uses both mergesort and quicksort.

• Arrays.sort() sorts array of Comparable or any primitive type.

• Uses quicksort for primitive types; mergesort for objects.

Q. Why use different algorithms, depending on type?

 import java.util.Arrays;

 public class StringSort

 {

 public static void main(String[] args)

 {

 String[] a = StdIn.readAll().split("\\s+");

 Arrays.sort(a);

 for (int i = 0; i < N; i++)

 StdOut.println(a[i]);

 }

 }

38

Java system sort for primitive types

Engineering a sort function. [Bentley-McIlroy, 1993]

• Original motivation: improve qsort().

• Basic algorithm = 3-way quicksort with cutoff to insertion sort.

• Partition on Tukey's ninther: median of the medians of 3 samples,

each of 3 elements.

Why use Tukey's ninther?

• Better partitioning than sampling.

• Less costly than random.

approximate median-of-9

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced elements R J

39

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java’s system sort is solid, right?

A killer input.

• Blows function call stack in Java and crashes program.

• Would take quadratic time if it didn’t crash first.

more disastrous consequences in C

% more 250000.txt

0

218750

222662

11

166672

247070

83339

...

% java IntegerSort < 250000.txt

Exception in thread "main"

java.lang.StackOverflowError

 at java.util.Arrays.sort1(Arrays.java:562)

 at java.util.Arrays.sort1(Arrays.java:606)

 at java.util.Arrays.sort1(Arrays.java:608)

 at java.util.Arrays.sort1(Arrays.java:608)

 at java.util.Arrays.sort1(Arrays.java:608)

 ...

Java's sorting library crashes, even if

you give it as much stack space as Windows allows

250,000 integers

between 0 and 250,000

40

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

• Construct malicious input while running system quicksort,

in response to elements compared.

• If v is partitioning element, commit to (v < a[i]) and (v < a[j]), but don't

commit to (a[i] < a[j]) or (a[j] > a[i]) until a[i] and a[j] are compared.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack: you enter linear amount of data;

server performs quadratic amount of work.

Remark. Attack is not effective if array is shuffled before sort.

Q. Why do you think system sort is deterministic?

41

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts. Distribution, MSD, LSD, 3-way radix quicksort.

Parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.

42

System sort: Which algorithm to use?

Applications have diverse attributes.

• Stable?

• Multiple keys?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your file randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

Q. Is the system sort good enough?

A. Usually.

many more combinations of

attributes than algorithms

43

Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee

fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence of

duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x x N lg N N lg N N lg N holy sorting grail

44

Which sorting algorithm?

data

type

hash

heap

sort

link

list

push

find

root

leaf

tree

null

path

node

left

less

exch

sink

swim

next

swap

fifo

lifo

data

fifo

hash

heap

exch

less

left

leaf

find

lifo

push

tree

null

path

node

list

link

sort

sink

swim

next

swap

type

root

data

find

hash

heap

leaf

link

list

push

root

sort

tree

type

exch

fifo

left

less

lifo

next

node

null

path

sink

swap

swim

data

find

hash

heap

leaf

link

list

push

root

sort

tree

type

null

path

node

left

less

exch

sink

swim

next

swap

fifo

lifo

data

exch

fifo

find

hash

heap

leaf

left

less

lifo

link

list

null

path

node

push

tree

type

sink

swim

next

swap

sort

root

data

hash

heap

type

link

list

push

sort

find

leaf

root

tree

left

node

null

path

exch

less

sink

swim

fifo

lifo

next

swap

data

exch

fifo

heap

find

link

hash

left

less

path

leaf

lifo

next

root

list

push

null

swap

node

swim

sort

type

sink

tree

data

exch

fifo

find

hash

heap

leaf

left

less

lifo

link

list

next

node

null

path

push

root

sink

sort

swap

swim

tree

type

original sorted? ? ? ? ? ?

