CHAPTER FIFTEEN

Radix Search

Several search methods proceed by examining the search keys one small piece at a time, rather than using full comparisons between keys at each step. These methods, called radix-search methods, operate in a manner entirely analogous to the radix-sorting methods that we discussed in Chapter 10. They are useful when the pieces of the search keys are easily accessible, and they can provide efficient solutions to a variety of practical search tasks.

We use the same abstract model that we used in Chapter 10: Depending on the context, a key may be a word (a fixed-length sequence of bytes) or a string (a variable-length sequence of bytes). We treat keys that are words as numbers represented in a base-R number system, for various values of R (the radix), and work with individual digits of the numbers. We view strings as variable-length numbers terminated by a special symbol so that, for both fixed- and variable-length keys, we can base all our algorithms on the abstract operation “extract the ith digit from a key,” including a convention to handle the case that the key has fewer than i digits. Accordingly, all of our implementations are based on the two-argument static method digit from Chapter 10 that implements this operation. For clarity, we use the name bit when R is 2.

This convention gives us the flexibility to accommodate complicated keys and items by define a class that extends key or to accommodate simple keys by defining appropriate digit or bit methods for
Program 15.1 Binary key type

This code extends a key class such as Program 12.2, which defines integer-valued keys, to provide radix methods with access to the key bits. It provides a bit method that returns the indicated bit from the key (an integer that is 0 or 1), the constants bitsword and R, and a toString method that returns a representation of the key as a string of bits.

class bitsKey extends Key
{
 public final static int bitsword = 31;
 public final static int R = 2;
 public int bit(int B)
 { return (val >> (bitsword-B-1)) & 1; }
 public String toString()
 { String s = new String("");
 for (int i = 0; i < bitsword; i++)
 s = s + bit(i);
 return s;
 }
}

primitive types. For example, for integer keys, we could replace KEY by int in our code and add to each class the following code:

 private final static int bitsword = 31;
 private final static int R = 2;
 private int bit(int val, int B)
 { return (val >> (bitsword-B-1)) & 1; }

Program 15.1 illustrates how to achieve the same effect for class key types by extending a key class to define the bit method (along with B, bitsword, and toString). In this case, we would add to each class the code

 private final static int R = bitsKey.R;
 private int bit(KEY v, int B)
 { return ((bitsKey) v).bit(B); }

The same approaches apply to implementing digit, using the techniques for various types of keys that are described in Section 10.1. Program 15.9 in Section 15.4 is an example of such a class.
The principal advantages of radix-search methods are that the methods provide reasonable worst-case performance without the complication of balanced trees; they provide an easy way to handle variable-length keys; some of them allow space savings by storing part of the key implicitly within the search structure; and they can provide fast access to data, competitive with both binary search trees and hashing. The disadvantages are that some of the methods can make inefficient use of space, and that, as with radix sorting, performance can suffer if efficient access to the bytes of the keys is not available.

First, we examine several search methods that proceed by examining the search keys 1 bit at a time, using them to travel through binary tree structures. We examine a series of methods, each one correcting a problem inherent in the previous one, culminating in an ingenious method that is useful for a variety of search applications.

Next, we examine generalizations to R-way trees. Again, we examine a series of methods, culminating in a flexible and efficient method that can support a basic symbol-table implementation and numerous extensions.

In radix search, we usually examine the most significant digits of the keys first. Many of the methods directly correspond to MSD radix-sorting methods, in the same way that BST-based search corresponds to quicksort. In particular, we shall see the analog to the linear-time sorts of Chapter 10—constant-time search methods based on the same principle.

We also consider the specific application of using radix-search structures for string processing, including building indexes for large text strings. The methods that we consider provide natural solutions for this application, and help to set the stage for us to consider more advanced string-processing tasks in Part 6.

15.1 Digital Search Trees

The simplest radix-search method is based on use of *digital search trees* (DSTs). The *search* and *insert* algorithms are identical to binary tree search except for one difference: We branch in the tree not according to the result of the comparison between the full keys, but rather according to selected bits of the key. At the first level, the leading bit is used; at the second level, the second leading bit is used; and so on, until an...
Figure 15.2
Digital search tree and insertion

In an unsuccessful search for M = 01101 in this sample digital search tree (top), we move left at the root (since the first bit in the binary representation of the key is 0) then right (since the second bit is 1), then right, then left, to finish at the null left link below N. To insert M (bottom), we replace the null link where the search ended with a link to the new node, just as we do with BST insertion.

Program 15.2 Binary digital search tree

To develop a symbol-table implementation using DSTs, we modify the implementations of search and insert in the standard BST implementation (see Program 12.8) as shown in this implementation of search. Rather than doing a full key comparison, we decide whether to move left or right on the basis of testing a single bit (the leading bit) of the key. The recursive function calls have a third argument so that we can move the bit position to be tested to the right as we move down the tree. We use a private static bit method to test bits (see text). These same changes apply to implementation of insert; otherwise, we use all the code from Program 12.8.

```java
private ITEM searchR(Node h, KEY v, int i)
{
    if (h == null) return null;
    if (equals(v, h.item.key())) return h.item;
    if (bit(v, i) == 0)
        return searchR(h.l, v, i+1);
    else return searchR(h.r, v, i+1);
}
ITEM search(KEY key)
{ return searchR(head, key, 0); }
```

external node is encountered. Program 15.2 is an implementation of search; the implementation of insert is similar. Rather than using less to compare keys, we assume that a bit method is available to access individual bits in keys. This code is virtually the same as the code for binary tree search (see Program 12.8), but has substantially different performance characteristics, as we shall see.

We saw in Chapter 10 that we need to pay particular attention to equal keys in radix sorting; the same is true in radix search. Generally, we assume in this chapter that all the key values to appear in the symbol table are distinct. We can do so without loss of generality because we can use one of the methods discussed in Section 12.1 to support applications that have records with duplicate keys. It is important to focus on distinct key values in radix search, because key values are intrinsic components of several of the data structures that we shall consider.
Figure 15.1 gives binary representations for the one-letter keys used in other figures in the chapter. Figure 15.2 gives an example of insertion into a DST; Figure 15.3 shows the process of inserting keys into an initially empty tree.

The bits of the keys control search and insertion, but note that DSTs do not have the ordering property that characterizes BSTs. That is, it is not necessarily the case that nodes to the left of a given node have smaller keys or that nodes to the right have larger keys, as would be the case in a BST with distinct keys. It is true that keys on the left of a given node are smaller than keys on the right—if the node is at level k, they all agree in the first k bits, but the next bit is 0 for the keys on the left and is 1 for the keys on the right—but the node’s key could itself be the smallest, largest, or any value in between of all the keys in that node’s subtree.

DSTs are characterized by the property that each key is somewhere along the path specified by the bits of the key (in order from left to right). This property is sufficient for the search and insert implementations in Program 15.2 to operate properly.

Suppose that the keys are words of a fixed length, all consisting of w bits. Our requirement that keys are distinct implies that $N \leq 2^w$, and we normally assume that N is significantly smaller than 2^w, since otherwise key-indexed search (see Section 12.2) would be the appropriate algorithm to use. Many practical problems fall within this range. For example, DSTs are appropriate for a symbol table containing up to 10^5 records with 32-bit keys (but perhaps not as many as 10^6 records), or for any number of 64-bit keys. Digital tree search also works for variable-length keys.

The worst case for trees built with digital search is much better than that for binary search trees, if the number of keys is large and the key lengths are small relative to the number of keys. The length of the longest path in a digital search tree is likely to be relatively small for many applications (for example, if the keys comprise random bits). In particular, the longest path is certainly limited by the length of the longest key; moreover, if the keys are of a fixed length, then the search time is limited by the length. Figure 15.4 illustrates this fact.

Property 15.1 A search or insertion in a digital search tree requires about $\lg N$ comparisons on the average, and about $2\lg N$ comparisons.
in the worst case, in a tree built from N random keys. The number of comparisons is never more than the number of bits in the search key.

We can establish the stated average-case and worst-case results for random keys with an argument similar to one given for a more natural problem in the next section, so we leave this proof for an exercise there (see Exercise 15.31). It is based on the simple intuitive notion that the unseen portion of a random key should be equally likely to begin with a 0 bit as a 1 bit, so half should fall on either side of any node. Each time that we move down the tree, we use up a key bit, so no search in a digital search tree can require more comparisons than there are bits in the search key. For the typical condition where we have w-bit words and the number of keys N is far smaller than the total possible number of keys 2^w, the path lengths are close to $\log N$, so the number of comparisons is far smaller than the number of bits in the keys for random keys. ■

Figure 15.5 shows a large digital search tree made from random 7-bit keys. This tree is nearly perfectly balanced. DSTs are attractive in many practical applications because they provide near-optimal performance even for huge problems, with little implementation effort. For example, a digital search tree built from 32-bit keys (or four 8-bit characters) is guaranteed to require fewer than 32 comparisons, and a digital search tree built from 64-bit keys (or eight 8-bit characters) is guaranteed to require fewer than 64 comparisons, even if there are billions of keys. For large N, these guarantees are comparable to the guarantee provided by red–black trees, but are achieved with about the same implementation effort as is required for standard BSTs (which can promise only guaranteed performance proportional to N^2). This feature makes the use of digital search trees an attractive alternative to use of balanced trees in practice for implementing the search and insert symbol-table operations, provided that efficient access to key bits is available.

Exercises

15.1 Draw the DST that results when you insert items with the keys \textsc{EASY QUESTION} in that order into an initially empty tree, using the binary encoding given in Figure 15.1.

15.2 Give an insertion sequence for the keys $A B C D E F G$ that results in a perfectly balanced DST that is also a valid BST.
15.3 Give an insertion sequence for the keys A B C D E F G that results in a perfectly balanced DST with the property that every node has a key smaller than those of all the nodes in its subtree.

15.4 Draw the DST that results when you insert items with the keys 0101-0011 00000111 01000001 01010001 11101100 00100001 10010101 01001010 in that order into an initially empty tree.

15.5 Can we keep records with duplicate keys in DSTs, in the same way that we can in BSTs? Explain your answer.

15.6 Run empirical studies to compare the height and internal path length of a DST built by insertion of N random 32-bit keys into an initially empty tree with the same measures of a standard binary search tree and a red–black tree (Chapter 13) built from the same keys, for $N = 10^3, 10^4, 10^5, 10^6$.

15.7 Give a full characterization of the worst-case internal path length of a DST with N distinct w-bit keys.

15.8 Implement the remove operation for a DST-based symbol table.

15.9 Implement the select operation for a DST-based symbol table.

15.10 Describe how you could compute the height of a DST made from a given set of keys, in linear time, without building the DST.

15.2 Tries

In this section, we consider a search tree that allows us to use the bits of the keys to guide the search, in the same way that DSTs do, but that keeps the keys in the tree in order, so that we can support recursive implementations of sort and other symbol-table operations, as we did for BSTs. The idea is to store keys only at the bottom of the tree, in leaf nodes. The resulting data structure has a number of useful properties and serves as the basis for several effective search algorithms. It was first discovered by de la Briandais in 1959, and, because it is useful for retrieval, it was given the name trie by Fredkin in 1960. Ironically, in
CHAPTER FIFTEEN

Figure 15.6
Trie search and insertion

Keys in a trie are stored in leaves (nodes with both links null); null links in nodes that are not leaves correspond to bit patterns not found in any keys in the trie.

In a successful search for the key $H = 01000$ in this sample trie (top), we move left at the root (since the first bit in the binary representation of the key is 0), then right (since the second bit is 1), where we find H, which is the only key in the tree that begins with 01. None of the keys in the trie begin with 101 or 11; these bit patterns lead to the two null links in the trie that are in non-leaf nodes.

To insert I (bottom), we need to add three non-leaf nodes: one corresponding to 01, with a null link corresponding to 011; one corresponding to 010, with a null link corresponding to 0101; and one corresponding to 0100 with $H = 01000$ in a leaf on its left and $I = 01001$ in a leaf on its right.

conversation, we usually pronounce this word “try-ee” or just “try,” so as to distinguish it from “tree.” For consistency with the nomenclature that we have been using, we perhaps should use the name “binary search trie,” but the term trie is universally used and understood. We consider the basic binary version in this section, an important variation in Section 15.3, and the basic multiway version and variations in Sections 15.4 and 15.5.

We can use tries for keys that are either a fixed number of bits or are variable-length bitstrings. To simplify the discussion, we start by assuming that no search key is the prefix of another. For example, this condition is satisfied when the keys are of fixed length and are distinct.

In a trie, we keep the keys in the leaves of a binary tree. Recall from Section 5.4 that a leaf in a tree is a node with no children, as distinguished from an external node, which we interpret as a null child. In a binary tree, a leaf is an internal node whose left and right links are both null. Keeping keys in leaves instead of internal nodes allows us to use the bits of the keys to guide the search, as we did with DSTs in Section 15.1, while still maintaining the basic invariant at each node that all keys whose current bit is 0 fall in the left subtree and all keys whose current bit is 1 fall in the right subtree.

Definition 15.1 A trie is a binary tree that has keys associated with each of its leaves, defined recursively as follows: The trie for an empty set of keys is a null link; the trie for a single key is a leaf containing that key; and the trie for a set of keys of cardinality greater than one is an internal node with left link referring to the trie for the keys whose initial bit is 0 and right link referring to the trie for the keys whose initial bit is 1, with the leading bit considered to be removed for the purpose of constructing the subtrees.

Each key in the trie is stored in a leaf, on the path described by the leading bit pattern of the key. Conversely, each leaf contains the only key in the trie that begins with the bits defined by the path from the root to that leaf. Null links in nodes that are not leaves correspond to leading-bit patterns that do not appear in any key in the trie. Therefore, to search for a key in a trie, we just branch according to its bits, as we did with DSTs, but we do not do comparisons at internal nodes. We start at the left of the key and the top of the trie, and take the left link if the current bit is 0 and the right link if the current bit is 1, moving
Program 15.3 Trie search

This function uses the bits of the key to control the branching on the way down the trie, in the same way as in Program 15.2 for DSTs. There are three possible outcomes: if the search reaches a leaf (with both links null), then that is the unique node in the trie that could contain the record with key \(v \), so we test whether that node indeed contains \(v \) (search hit) or some key whose leading bits match \(v \) (search miss). If the search reaches a null link, then the parent’s other link must not be null, so there is some other key in the trie that differs from the search key in the corresponding bit, and we have a search miss. This code assumes that the keys are distinct, and (if the keys may be of different lengths) that no key is a prefix of another. The item member is not used in non-leaf nodes.

```java
private ITEM searchR(Node h, KEY v, int d)
{
    if (h == null) return null;
    if (h.l == null && h.r == null)
    { if (equals(v, h.item.key()))
      return h.item; else return null; }
    if (bit(v, d) == 0)
        return searchR(h.l, v, d+1);
    else return searchR(h.r, v, d+1);
}
ITEM search(KEY key)
{ return searchR(head, key, 0); }
```

one bit position to the right in the key. A search that ends on a null link is a miss; a search that ends on a leaf can be completed with one key comparison, since that node contains the only key in the trie that could be equal to the search key. Program 15.3 is an implementation of this process.

To insert a key into a trie, we first perform a search, as usual. If the search ends on a null link, we replace that link with a link to a new leaf containing the key, as usual. But if the search ends on a leaf, we need to continue down the trie, adding an internal node for every bit where the search key and the key that was found agree, ending with both keys in leaves as children of the internal node corresponding to the first bit position where they differ. Figure 15.6 gives an example of
Program 15.4 Trie insertion

To insert a new node into a trie, we search as usual, then distinguish the two cases that can occur for a search miss.

If the miss was not on a leaf, then we replace the null link that caused us to detect the miss with a link to a new node, as usual.

If the miss was on a leaf, then we use a function `split` to make one new internal node for each bit position where the search key and the key found agree, finishing with one internal node for the leftmost bit position where the keys differ. The `switch` statement in `split` converts the two bits that it is testing into a number to handle the four possible cases. If the bits are the same (case `00_2 = 0` or `11_2 = 3`), then we continue splitting; if the bits are different (case `01_2 = 1` or `10_2 = 2`), then we stop splitting.

```java
Node split(Node p, Node q, int d)
{
    Node t = new Node(null);
    KEY v = p.item.key(), w = q.item.key();
    switch(bit(v, d)*2 + bit(w, d))
    { case 0: t.l = split(p, q, d+1); break;
      case 1: t.l = p; t.r = q; break;
      case 2: t.r = p; t.l = q; break;
      case 3: t.r = split(p, q, d+1); break;
    }
    return t;
}

private Node insertR(Node h, ITEM x, int d)
{
    if (h == null)
        return new Node(x);
    if (h.l == null && h.r == null)
        return split(new Node(x), h, d);
    if (bit(x.key(), d) == 0)
        h.l = insertR(h.l, x, d+1);
    else h.r = insertR(h.r, x, d+1);
    return h;
}

void insert(ITEM x)
{
    head = insertR(head, x, 0);
}
```
trie search and insertion; Figure 15.7 shows the process of constructing a trie by inserting keys into an initially empty trie. Program 15.4 is a full implementation of the insertion algorithm.

We do not access null links in leaves, and we do not store items in non-leaf nodes, so we could save space by using a pair of derived classes to define nodes as being one of these two types (see Exercise 15.22). For the moment, we will take the simpler route of using the single node type that we have been using for BSTs, DSTs, and other binary tree structures, with internal nodes characterized by null keys and leaves characterized by null links, knowing that we could reclaim the space wasted because of this simplification, if desired. In Section 15.3, we will see an algorithmic improvement that avoids the need for multiple node types.

We now shall consider a number of basic properties of tries, which are evident from the definition and these examples.

Property 15.2. The structure of a trie is independent of the key insertion order: There is a unique trie for any given set of distinct keys.

This fundamental fact, which follows immediately by induction on the subtrees, is a distinctive feature of tries: for all the other search tree structures that we have considered, the tree that we construct depends both on the set of keys and on the order in which we insert those keys.

The left subtree of a trie has all the keys that have 0 for the leading bit; the right subtree has all the keys that have 1 for the leading bit. This property of tries leads to an immediate correspondence with radix sorting: binary trie search partitions the file in exactly the same way as does binary quicksort (see Section 10.2). This correspondence is evident when we compare the trie in Figure 15.6 with Figure 10.4, the partitioning diagram for binary quicksort (after noting that the keys are slightly different); it is analogous to the correspondence between binary tree search and quicksort that we noted in Chapter 12.

In particular, unlike DSTs, tries do have the property that keys appear in order, so we can implement the sort and select symbol-table operations in a straightforward manner (see Exercises 15.19 and 15.20). Moreover, tries are as well-balanced as DSTs.

Property 15.3. Insertion or search for a random key in a trie built from N random (distinct) bitstrings requires about $\log N$ bit compar-
isons on the average. The worst-case number of bit comparisons is bounded only by the number of bits in the search key.

We need to exercise care in analyzing tries because of our insistence that the keys be distinct, or, more generally, that no key be a prefix of another. One simple model that accommodates this assumption requires the keys to be a random (infinite) sequence of bits—we take the bits that we need to build the trie.

The average-case result then comes from the following probabilistic argument. The probability that each of the \(N \) keys in a random trie differ from a random search key in at least one of the leading \(t \) bits is

\[
(1 - \frac{1}{2^t})^N.
\]

Subtracting this quantity from 1 gives the probability that one of the keys in the trie matches the search key in all of the leading \(t \) bits. In other words,

\[
1 - (1 - \frac{1}{2^t})^N
\]

is the probability that the search requires more than \(t \) bit comparisons. From elementary probabilistic analysis, the sum for \(t \geq 0 \) of the probabilities that a random variable is \(> t \) is the average value of that random variable, so the average search cost is given by

\[
\sum_{t \geq 0} (1 - (1 - \frac{1}{2^t})^N).
\]

Using the elementary approximation \((1 - 1/x)^x \sim e^{-1}\), we find the search cost to be approximately

\[
\sum_{t \geq 0} \left(1 - e^{-N/2^t}\right).
\]

The summand is extremely close to 1 for approximately \(\lg N \) terms with \(2^t \) substantially smaller than \(N \); it is extremely close to 0 for all the terms with \(2^t \) substantially greater than \(N \); and it is somewhere between 0 and 1 for the few terms with \(2^t \approx N \). So the grand total is about \(\lg N \). Computing a more precise estimate of this quantity requires using extremely sophisticated mathematics (see reference section). This analysis assumes that \(w \) is sufficiently large that we never run out of bits during a search, but taking into account the true value of \(w \) will only reduce the cost.
In the worst case, we could get two keys that have a huge number of equal bits, but this event happens with vanishingly small probability. The probability that the worst-case result quoted in Property 15.3 will not hold is exponentially small (see Exercise 15.30).

Another approach to analyzing tries is to generalize the approach that we used to analyze BSTs (see Property 12.6). The probability that \(k \) keys start with a 0 bit and \(N - k \) keys start with a 1 bit is \(\binom{N}{k} / 2^N \), so the external path length is described by the recurrence

\[
C_N = N + \frac{1}{2^N} \sum_k \left(\binom{N}{k} (C_k + C_{N-k}) \right).
\]

This recurrence is similar to the quicksort recurrence that we solved in Section 7.2, but it is much more difficult to solve. Remarkably, the solution is precisely \(N \) times the expression for the average search cost that we derived for Property 15.3 (see Exercise 15.27). Studying the recurrence itself gives insight into why tries have better balance than do BSTs: The probability is much higher that the split will be near the middle than that it will be anywhere else, so the recurrence is more like the mergesort recurrence (approximate solution \(N \log N \)) than like the quicksort recurrence (approximate solution \(2N \log N \)).

An annoying feature of tries, and another one that distinguishes them from the other types of search trees that we have seen, is the one-way branching required when keys have bits in common. For example, keys that differ in only the final bit always require a path whose length is equal to the key length, no matter how many keys there are in the tree, as illustrated in Figure 15.8. The number of internal nodes can be somewhat larger than the number of keys.

Property 15.4 A trie built from \(N \) random \(w \)-bit keys has about \(N / \ln 2 \approx 1.44N \) nodes on the average.

By modifying the argument for Property 15.3, we can write the expression

\[
\sum_{t \geq 1} \left(2^t \left(1 - \frac{1}{2^t} \right)^N - N \left(1 - \frac{1}{2^t} \right)^{N-1} \right)
\]

for the average number of nodes in an \(N \)-key trie (see Exercise 15.28). The mathematical analysis that yields the stated approximate value for this sum is much more difficult than the argument that we gave for
Property 15.3, because many terms contribute values that are not 0 or 1 to the value of the sum (see reference section).

We can verify these results empirically. For example, Figure 15.9 shows a big trie, which has 44 percent more nodes than does the BST or the DST built with the same set of keys but nevertheless is well balanced, with a near-optimal search cost. Our first thought might be that the extra nodes would raise the average search cost substantially, but this suspicion is not valid—for example, we would increase the average search cost by only 1 even if we were to double the number of nodes in a balanced trie.

For convenience in the implementations in Programs 15.3 and 15.4, we assumed that the keys are of fixed length and are distinct, so that we could be certain that the keys would eventually distinguish themselves and that the programs could process 1 bit at a time and never run out of key bits. For convenience in the analyses in Properties 15.2 and 15.3, we implicitly assumed that the keys have an arbitrary number of bits, so that they eventually distinguish themselves except with tiny (exponentially decaying) probability. A direct offshoot of these assumptions is that both the programs and the analyses apply when the keys are variable-length bitstrings, with a few caveats.

To use the programs as they stand for variable-length keys, we need to extend our restriction that the keys be distinct to say that no key be a prefix of another. This restriction is met automatically in some applications, as we shall see in Section 15.5. Alternatively, we could handle such keys by keeping information in internal nodes, because each prefix that might need to be handled corresponds to some internal node in the trie (see Exercise 15.32).

For sufficiently long keys comprising random bits, the average-case results of Properties 15.2 and 15.3 still hold. In the worst case, the height of a trie is still limited by the number of bits in the longest
keys. This cost could be excessive if the keys are huge and perhaps have some uniformity, as might arise in encoded character data. In the next two sections, we consider methods of reducing trie costs for long keys. One way to shorten paths in tries is to collapse one-way branches into single links—we discuss an elegant and efficient way to accomplish this task in Section 15.3. Another way to shorten paths in tries is to allow more than two links per node—this approach is the subject of Section 15.4.

Exercises

15.11 Draw the trie that results when you insert items with the keys E A S Y Q U T I O N in that order into an initially empty trie.

15.12 What happens when you use Program 15.4 to insert a record whose key is equal to some key already in the trie?

15.13 Draw the trie that results when you insert items with the keys 0101-0011 00000111 01000001 01000001 11101100 00100001 10010101 01001010 into an initially empty trie.

15.14 Run empirical studies to compare the height, number of nodes, and internal path length of a trie built by insertion of \(N \) random 32-bit keys into an initially empty trie with the same measures of a standard binary search tree and a red–black tree (Chapter 13) built from the same keys, for \(N = 10^3, 10^4, 10^5, \) and \(10^6 \) (see Exercise 15.6).

15.15 Give a full characterization of the worst-case internal path length of a trie with \(N \) distinct \(w \)-bit keys.

15.16 Implement a lazy count operation for the trie-based symbol table implementation of Programs 15.3 and 15.4.

15.17 Add an integer field \(N \) to Node and modify the trie code in Programs 15.3 and 15.4 to implement an eager count operation that takes constant time.

15.18 Implement the remove operation for the trie-based symbol table implementation of Programs 15.3 and 15.4.

15.19 Implement the select operation for the trie-based symbol table implementation of Programs 15.3 and 15.4.

15.20 Implement the sort operation for the trie-based symbol table implementation of Programs 15.3 and 15.4.

15.21 Write a program that prints out all keys in a trie that have the same initial \(t \) bits as a given search key.

15.22 Use a pair of derived classes to develop implementations of search and insert using tries with non-leaf nodes that contain links but no items and with leaves that contain items but no links.
15.23 Modify Programs 15.4 and 15.3 to keep the search key in a machine register and to shift one bit position to access the next bit when moving down a level in the trie.

15.24 Modify Programs 15.4 and 15.3 to maintain a table of 2^r tries, for a fixed constant r, and to use the first r bits of the key to index into the table and the standard algorithms with the remainder of the key on the trie accessed. This change saves about r steps unless the table has a significant number of null entries.

15.25 What value should we choose for r in Exercise 15.24, if we have N random keys (which are sufficiently long that we can assume them to be distinct)?

15.26 Write a program to compute the number of nodes in the trie corresponding to a given set of distinct fixed-length keys, by sorting them and comparing adjacent keys in the sorted list.

- 15.27 Prove by induction that $N \sum_{t \geq 0} (1 - (1 - 2^{-t})^N)$ is the solution to the quicksort-like recurrence that is given after Property 15.3 for the external path length in a random trie.

- 15.28 Derive the expression given in Property 15.4 for the average number of nodes in a random trie.

- 15.29 Write a program to compute the average number of nodes in a random trie of N nodes and print the exact value, accurate to 10^{-3}, for $N = 10^3$, 10^4, 10^5, and 10^6.

- 15.30 Prove that the height of a trie built from N random bitstrings is about $2 \lg N$. Hint: Consider the birthday problem (see Property 14.2).

- 15.31 Prove that the average cost of a search in a DST built from random keys is asymptotically $\lg N$ (see Properties 15.1 and 15.2).

15.32 Modify Programs 15.3 and 15.4 to handle variable-length bitstrings under the sole restriction that records with duplicate keys are not kept in the data structure. In particular, decide upon a convention for the return value of $\text{bit}(v, d)$ for the case that d is greater than the length of v.

15.33 Develop a trie-based class that implements an existence table ADT for w-bit integers. Your should include a constructor and support insert, and search operations, where search and insert take integer arguments, and search returns false for search miss and true for search hit (see Program 15.10).

15.3 Patricia Tries

Trie-based search as described in Section 15.2 has two inconvenient flaws. First, the one-way branching leads to the creation of extra nodes in the trie, which seem unnecessary. Second, there are two
Nodes in Patricia tries contain a field that indicates which bit position distinguishes keys on the right from keys on the left. We use a dummy node head at the top of the trie that is always the result of a search for the null (all 0s) key. The root of the trie is at head.l (the link head.r is unused).

```java
class ST {
    private class Node {
        ITEM item; Node l, r; int bit;
        Node(ITEM x, int i) { item = x; bit = i; }
    }
    private Node head;
    ST(int maxN) {
        head = new Node(null, -1); head.l = head;
    }
    void insert(ITEM x) // See Program 15.6
    ITEM search(KEY key) // See Program 15.7
    public String toString() // See Program 15.8
}
```

different types of nodes in the trie, which leads to complications (see Exercise 15.22). In 1968, Morrison discovered a way to avoid both of these problems, in a method that he named patricia (“practical algorithm to retrieve information coded in alphanumeric”). Morrison developed his algorithm in the context of string-indexing applications of the type that we shall consider in Section 15.5, but it is equally effective as a symbol-table implementation. Like DSTs, patricia tries allow search for \(N\) keys in a tree with just \(N\) nodes; like tries, they require only about \(\lg N\) bit comparisons and one full key comparison per search, and they support other ADT operations. Moreover, these performance characteristics are independent of key length, and the data structure is suitable for variable-length keys.

Starting with the standard trie data structure, we avoid one-way branching via a simple device: we put into each node the index
In a successful search for \(R = 10010 \) in this sample patricia trie (top), we move right (since bit 0 is 1), then left (since bit 4 is 0), which brings us to \(\text{R} \) (the only key in the tree that begins with \(1***0 \)). On the way down the tree, we check only the key bits indicated in the numbers over the nodes (and ignore the keys in the nodes). When we first reach a link that points up the tree, we compare the search key against the key in the node pointed to by the up link, since that is the only key in the tree that could be equal to the search key.

In an unsuccessful search for \(1 = 01001 \), we move left at the root (since bit 0 of the key is 0), then take the right (up) link (since bit 1 is 1) and find that \(\text{H} \) (the only key in the trie that begins with \(01 \)) is not equal to \(1 \).

Program 15.6 Patricia-trie search

The recursive function `searchR` returns the unique node that could contain the record with key \(v \). It travels down the trie, using the bits of the tree to control the search, but tests only 1 bit per node encountered—the one indicated in the bit field. It terminates the search when it encounters an external link, one which points up the tree. The search function `search` calls `searchR`, then tests the key in that node to determine whether the search is a hit or a miss.

```java
private ITEM searchR(Node h, KEY v, int i)
{
    if (h.bit <= i) return h.item;
    if (bit(v, h.bit) == 0)
      return searchR(h.l, v, h.bit);
    else return searchR(h.r, v, h.bit);
}

ITEM search(KEY key)
{
    ITEM t = searchR(head.l, key, -1);
    if (t == null) return null;
    if (equals(t.key(), key)) return t;
    return null;
}
```

the bit to be tested to decide which path to take out of that node. Thus, we jump directly to the bit where a significant decision is to be made, bypassing the bit comparisons at nodes where all the keys in the subtree have the same bit value. Moreover, we avoid external nodes via another simple device: we store data in internal nodes and replace links to external nodes with links that point back upwards to the correct internal node in the trie. These two changes allow us to represent tries with binary trees comprising nodes with a key and two links (and an additional field for the index), which we call *patricia tries*. With patricia tries, we store keys in nodes as with DSTs, and we traverse the tree according to the bits of the search key, but we do not use the keys in the nodes on the way down the tree to control the search; we merely store them there for possible later reference, when the bottom of the tree is reached.
As hinted in the previous paragraph, it is easier to follow the mechanics of the algorithm if we first take note that we can regard standard tries and patricia tries as different representations of the same abstract trie structure. For example, the tries in Figure 15.10 and at the top in Figure 15.11, which illustrate search and insertion for patricia tries, represent the same abstract structure as do the tries in Figure 15.6. The search and insertion algorithms for patricia tries use, build, and maintain a concrete representation of the abstract trie data structure different from the search and insertion algorithms discussed in Section 15.2, but the underlying trie abstraction is the same.

Program 15.6 is an implementation of the patricia-trie search algorithm. The method differs from trie search in three ways: there are no explicit null links, we test the indicated bit in the key instead of the next bit, and we end with a search key comparison at the point where we follow a link up the tree. It is easy to test whether a link points up, because the bit indices in the nodes (by definition) increase as we travel down the tree. To search, we start at the root and proceed down the tree, using the bit index in each node to tell us which bit to examine in the search key—we go right if that bit is 1, left if it is 0. The keys in the nodes are not examined at all on the way down the tree. Eventually, an upward link is encountered: each upward link points to the unique key in the tree that has the bits that would cause a search to take that link. Thus, if the key at the node pointed to by the first upward link encountered is equal to the search key, then the search is successful; otherwise, it is unsuccessful.

Figure 15.10 illustrates search in a patricia trie. For a miss due to the search taking a null link in a trie, the corresponding patricia trie search will take a course somewhat different from that of standard trie search, because the bits that correspond to one-way branching are not tested at all on the way down the trie. For a search ending at a leaf in a trie, the patricia-trie search ends up comparing against the same key as the trie search, but without examining the bits corresponding to one-way branching in the trie.

The implementation of insertion for patricia tries mirrors the two cases that arise in insertion for tries, as illustrated in Figure 15.11. As usual, we gain information on where a new key belongs from a search miss. For tries, the miss can occur either because of a null link or because of a key mismatch at a leaf. For patricia tries, we need to
Figure 15.12
Patricia-trie construction

This sequence depicts the result of inserting the keys A S E R C H into an initially empty patricia trie. Figure 15.11 depicts the result of inserting I and then N into the tree at the bottom.

Program 15.7 is an implementation of the patricia-trie–insertion algorithm. The code follows directly from the description in the previous paragraph, with the additional observation that we view links to nodes with bit indices that are not larger than the current bit index as links to external nodes. The insertion code merely tests this property of the links, but does not have to move keys or links around at all. The upward links in patricia tries seem mysterious at first, but the decisions to do more work to decide which type of insertion is needed, because we skipped the bits corresponding to one-way branching during the search. A patricia-trie search always ends with a key comparison, and this key carries the information that we need. We find the leftmost bit position where the search key and the key that terminated the search differ, then search through the trie again, comparing that bit position against the bit positions in the nodes on the search path. If we come to a node that specifies a bit position higher than the bit position that distinguishes the key sought and the key found, then we know that we skipped a bit in the patricia-trie search that would have led to a null link in the corresponding trie search, so we add a new node for testing that bit. If we never come to a node that specifies a bit position higher than the one that distinguishes the key sought and the key found, then the patricia-trie search corresponds to a trie search ending in a leaf, and we add a new node that distinguishes the search key from the key that terminated the search. We always add just one node, which references the leftmost bit that distinguishes the keys, where standard trie insertion might add multiple nodes with one-way branching before reaching that bit. That new node, besides providing the bit-discrimination that we need, will also be the node that we use to store the new item.

We use the convention that the leftmost link (the one corresponding to a key that is all 0 bits) does not point to any internal node. We need such a convention because the number of external links exceeds the number of internal nodes by precisely 1 in every binary tree. To make sure that no search ever follows that link, we further adopt the convention for class types that only the null key has all 0 bits. This convention is easy to enforce by implementing bit so as to always return 0 for the null key and to return 1 after exhausting the bits of any non-null key (see Exercise 15.34). Figure 15.12 shows the initial stages of the construction of a sample trie, which illustrate these conventions.
Program 15.7 Patricia-trie insertion

To insert a key into a patricia trie, we begin with a search. The function \texttt{searchR} from Program 15.6 gets us to a unique key in the tree that must be distinguished from the key to be inserted. We determine the leftmost bit position at which this key and the search key differ, then use the recursive function \texttt{insertR} to travel down the tree and to insert a new node containing \texttt{x} at that point.

In \texttt{insertR}, there are two cases, corresponding to the two cases illustrated in Figure 15.11. The new node could replace an internal link (if the search key differs from the key found in a bit position that was skipped), or an external link (if the bit that distinguishes the search key from the found key was not needed to distinguish the found key from all the other keys in the trie).

This code assumes that \texttt{KEY} is a class type and depends upon \texttt{bit} being implemented so that \texttt{null} is the only key that is all 0s (see text).

```java
private Node insertR(Node h, ITEM x, int i, Node p)
{ KEY v = x.key();
  if ((h.bit >= i) || (h.bit <= p.bit))
  {
    Node t = new Node(x, i);
    t.l = bit(v, t.bit) == 0 ? t : h;
    t.r = bit(v, t.bit) == 0 ? h : t;
    return t;
  }
  if (bit(v, h.bit) == 0)
    h.l = insertR(h.l, x, i, h);
  else h.r = insertR(h.r, x, i, h);
  return h;
}
void insert(ITEM x)
{ int i = 0;
  KEY v = x.key();
  ITEM t = searchR(head.l, v, -1);
  KEY w = (t == null) ? null : t.key();
  if (v == w) return;
  while (bit(v, i) == bit(w, i)) i++;
  head.l = insertR(head.l, x, i, head);
}
```
CHAPTER FIFTEEN

Program 15.8 Patricia-trie sort

This recursive procedure shows the records in a patricia trie in order of their keys. We imagine the items to be in (virtual) external nodes, which we can identify by testing when the bit index on the current node is not larger than the bit index on its parent. Otherwise, this program is a standard inorder traversal.

```java
private String toStringR(Node h, int i)
{
    if (h == head) return "";
    if (h.bit <= i) return h.item + "\n";
    return toStringR(h.l, h.bit) +
           toStringR(h.r, h.bit);
}

public String toString()
{ return toStringR(head.l, -1); }
```

about which links to use when each node is inserted are surprisingly straightforward. The end result is that using one node type rather than two simplifies the code substantially.

By construction, all external nodes below a node with bit index \(k \) begin with the same \(k \) bits (otherwise, we would have created a node with bit index less than \(k \) to distinguish two of them). Therefore, we can convert a patricia trie to a standard trie by creating the appropriate internal nodes between nodes where bits are skipped and by replacing links that point up the tree with links to external nodes (see Exercise 15.52). However, Property 15.2 does not quite hold for patricia tries, because the assignment of keys to internal nodes does depend on the order in which the keys are inserted. The structure of the internal nodes is independent of the key-insertion order, but external links and the placement of the key values are not.

An important consequence of the fact that a patricia trie represents an underlying standard trie structure is that we can use a recursive inorder traversal to visit the nodes in order, as demonstrated in the implementation given in Program 15.8. We visit just the external nodes, which we identify by testing for nonincreasing bit indices.

Patricia is the quintessential radix search method: it manages to identify the bits that distinguish the search keys and to build them into
a data structure (with no surplus nodes) that quickly leads from any search key to the only key in the data structure that could be equal to the search key. Figure 15.13 shows the patricia trie for the same keys used to build the trie of Figure 15.9—the patricia trie not only has 44 percent fewer nodes than the standard trie, but also is nearly perfectly balanced.

Property 15.5 Insertion or search for a random key in a patricia trie built from \(N \) random bitstrings requires about \(\lg N \) bit comparisons on the average, and about \(2\lg N \) bit comparisons in the worst case. The number of bit comparisons is never more than the length of the key.

This fact is an immediate consequence of Property 15.3, since paths in patricia tries are no longer than paths in the corresponding trie. The precise average-case analysis of patricia is difficult; it turns out that patricia involves one fewer comparison, on the average, than does a standard trie (see reference section).

Table 15.1 gives empirical data supporting the conclusion that DSTs, standard binary tries, and patricia tries have comparable performance (and that they provide search times comparable to or shorter than the balanced-tree methods of Chapter 13) when keys are integers, and certainly should be considered for symbol-table implementations even with keys that can be represented as short bitstrings, taking into account the various straightforward tradeoffs that we have noted.

Table 15.1 gives empirical data supporting the conclusion that DSTs, standard binary tries, and patricia tries have comparable performance (and that they provide search times comparable to or shorter than the balanced-tree methods of Chapter 13) when keys are integers, and certainly should be considered for symbol-table implementations even with keys that can be represented as short bitstrings, taking into account the various straightforward tradeoffs that we have noted.

Note that the search cost given in Property 15.5 does not grow with the key length. By contrast, the search cost in a standard trie typically does depend on the length of the keys—the first bit position that differs in two given keys could be arbitrarily far into the key. All the comparison-based search methods that we have considered also depend on the key length—if two keys differ in only their rightmost bit, then comparing them requires time proportional to their length.
Table 15.1 Empirical study of trie implementations

These relative timings for construction and search in symbol tables with random sequences of 32-bit integers confirm that digital methods are competitive with balanced-tree methods, even for keys that are random bits. Performance differences are more remarkable when keys are long and are not necessarily random (see Table 15.2), or when careful attention is paid to making the key-bit-access code efficient (see Exercise 15.23).

<table>
<thead>
<tr>
<th>(N)</th>
<th>B</th>
<th>D</th>
<th>T</th>
<th>P</th>
<th>(N)</th>
<th>B</th>
<th>D</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12500</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>18</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>25000</td>
<td>40</td>
<td>36</td>
<td>44</td>
<td>41</td>
<td>20</td>
<td>17</td>
<td>20</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>50000</td>
<td>81</td>
<td>80</td>
<td>99</td>
<td>90</td>
<td>43</td>
<td>41</td>
<td>47</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>176</td>
<td>167</td>
<td>269</td>
<td>242</td>
<td>103</td>
<td>85</td>
<td>101</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>200000</td>
<td>411</td>
<td>360</td>
<td>544</td>
<td>448</td>
<td>228</td>
<td>179</td>
<td>211</td>
<td>182</td>
<td></td>
</tr>
</tbody>
</table>

Key:

- B Red–black BST (Programs 12.8 and 13.6)
- D DST (Program 15.2)
- T Trie (Programs 15.3 and 15.4)
- P Patricia trie (Programs 15.6 and 15.7)

Furthermore, hashing methods always require time proportional to the key length for a search, to compute the hash function. But patricia immediately takes us to the bits that matter, and typically involves testing less than \(\lg N \) of them. This effect makes patricia (or trie search with one-way branching removed) the search method of choice when the search keys are long.

For example, suppose that we have a computer that can efficiently access 8-bit bytes of data, and we have to search among millions of 1000-bit keys. Then patricia would require accessing only about 20 bytes of the search key for the search, plus one 125-byte equality com-
parison, whereas hashing would require accessing all 125 bytes of the search key to compute the hash function, plus a few equality comparisons, and comparison-based methods would require 20 to 30 full key comparisons. It is true that key comparisons, particularly in the early stages of a search, require only a few byte comparisons, but later stages typically involve many more bytes. We shall consider comparative performance of various methods for searching with lengthy keys again in Section 15.5.

Indeed, there needs to be no limit at all on the length of search keys for patricia. Patricia is particularly effective in applications with variable-length keys that are potentially huge, such as the one discussed in Section 15.5. With patricia, we generally can expect that the number of bit inspections required for a search among \(N \) records, even with huge keys, will be roughly proportional to \(\lg N \).

Exercises

15.34 Modify the implementation of the two-parameter bit method in the text after Program 15.1 to return 1 if its second parameter is not less than bitsword and to always return 0 if its first parameter is null.

15.35 What happens when you use Program 15.7 to insert a record whose key is equal to some key already in the trie?

▷ 15.36 Draw the patricia trie that results when you insert the keys E A S Y Q U T I O N in that order into an initially empty trie.

▷ 15.37 Draw the patricia trie that results when you insert the keys 01010011 00000111 00100001 01010001 11101110 00100001 10010101 01001010 in that order into an initially empty trie.

○ 15.38 Draw the patricia trie that results when you insert the keys 01001010 10010101 01010001 11101110 01010001 01001010 10010101 01001010 in that order into an initially empty trie.

15.39 Run empirical studies to compare the height and internal path length of a patricia trie built by insertion of \(N \) random 32-bit keys into an initially empty trie with the same measures of a standard binary search tree and a red-black tree (Chapter 13) built from the same keys, for \(N = 10^3, 10^5, 10^7 \), and \(10^9 \) (see Exercises 15.6 and 15.14).

15.40 Give a full characterization of the worst-case internal path length of a patricia trie with \(N \) distinct \(w \)-bit keys.

15.41 Implement a lazy count operation for the patricia-based symbol table implementation of Programs 15.5 through 15.7.

15.42 Add an integer field \(N \) to Node and modify the patricia code in Programs 15.5 through 15.7 to implement an eager count operation that takes constant time.
15.43 Implement the *select* operation for a patricia-based symbol table.

- 15.44 Implement the *remove* operation for a patricia-based symbol table.

- 15.45 Implement the *join* operation for patricia-based symbol tables.

 15.46 Write a program that prints out all keys in a patricia trie that have the same initial \(t \) bits as a given search key.

15.47 Modify standard trie search and insertion (Programs 15.3 and 15.4) to eliminate one-way branching in the same manner as for patricia tries. If you have done Exercise 15.22, start with that program instead.

15.48 Modify patricia search and insertion (Programs 15.6 and 15.7) to maintain a table of \(2^r \) tries, as described in Exercise 15.24.

15.49 Show that each key in a patricia trie is on its own search path, and is therefore encountered on the way down the tree during a *search* operation as well as at the end.

15.50 Modify patricia search (Program 15.6) to compare keys on the way down the tree to improve search-hit performance. Run empirical studies to evaluate the effectiveness of this change (see Exercise 15.49).

15.51 Use a patricia trie to build a data structure that can support an existence table ADT for \(w \)-bit integers (see Exercise 15.33).

- 15.52 Write programs that convert a patricia trie to a standard trie on the same keys, and vice versa.

15.4 Multiway Tries and TSTs

For radix sorting, we found that we could get a significant improvement in speed by considering more than 1 bit at a time. The same is true for radix search: By examining \(r \) bits at a time, we can speed up the search by a factor of \(r \). However, there is a catch that makes it necessary for us to be more careful in applying this idea than we had to be for radix sorting. The problem is that considering \(r \) bits at a time corresponds to using tree nodes with \(R = 2^r \) links, and that can lead to a considerable amount of wasted space for unused links.
Program 15.9 Radix key type example

This code is an example of extending a key class such as Program 12.2, which defines integer-valued keys, to provide radix methods with access to the key digits. It provides a digit method that returns the indicated digit from the decimal representation of the key (an integer that is 0 through 9), and the constants R and END. Numbers of type int have only ten decimal digits; our convention is to return END if a client asks for a digit beyond the end of the number.

```java
class radixKey extends Key {
    public final static int R = 10;
    public final static int END = -1;
    private int[] p =
        {1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1};
    public int digit(int B) {
        int v = val;
        if (B > 9) return END;
        return (v/p[B]) % 10;
    }
}
```

Program 15.9 is an example of a key type implementation that provides access to key digits. As with bit, if we were to use this type of key, we would add to each class the code

```java
private final static int R = radixKey.R;
private int digit(KEY v, int i) {
    return ((radixKey) v).digit(i);
}
```

to give us the flexibility to substitute a direct implementation for keys that are primitive types (see Exercise 15.53).

In the (binary) tries of Section 15.2, the nodes corresponding to key bits have two links: one for the case when the key bit is 0, and the other for the case when the key bit is 1. The appropriate generalization is to R-ary tries, where we have nodes with R links corresponding to key digits, one for each possible digit value. Keys are stored in leaves (nodes with all links null). To search in an R-way trie, we start at the root and at the leftmost key digit, and use the key digits to guide
us down the tree. We go down the ith link (and move to the next digit) if the digit value is i. If we reach a leaf, it contains the only key in the trie with leading digits corresponding to the path that we have traversed, so we can compare that key with the search key to determine whether we have a search hit or a search miss. If we reach a null link, we know that we have a search miss, because that link corresponds to a leading-digit pattern not found in any keys in the trie. Figure 15.14 shows a 10-way trie that represents a sample set of decimal numbers. As we discussed in Chapter 10, numbers typically seen in practice are distinguished with relatively few trie nodes. This same effect for more general types of keys is the basis for a number of efficient search algorithms.

Before doing a full symbol-table implementation with multiple node types and so forth, we begin our study of multiway tries by concentrating on the existence-table problem, where we have only keys (no records or associated information) and want to develop algorithms to insert a key into a data structure and to search the data structure to tell us whether or not a given key has been inserted. Program 15.10 defines an ADT for existence tables. The existence-table implementation that we consider next clearly exposes the structure of multiway tries, is useful in its own right, and paves the way for using tries in a standard symbol-table ADT implementation.

Definition 15.2 The existence trie corresponding to a set of keys is defined recursively as follows: The trie for an empty set of keys is a null link; and the trie for a nonempty set of keys is an internal node with links referring to the trie for each possible key digit, with the leading digit considered to be removed for the purpose of constructing the subtrees.

For simplicity, we assume in this definition that no key is the prefix of another. Typically, we enforce this restriction by ensuring that the keys are distinct and either are of fixed length or have a termination
Program 15.10 Existence-table ADT
This interface defines the simplest kind of symbol table, where we have keys but no associated information. Clients can insert a key and search to determine whether or not a given key has been inserted.

class ET // ADT interface
 { // implementations and private members hidden
 ET()
 boolean search(KEY)
 void insert(KEY)
 }

digit with value END, a sentinel that is used for no other purpose. The point of this definition is that we can use existence tries to implement existence tables, without storing any information within the trie; the information is all implicitly defined within the trie structure. Each node has \(R + 1 \) links (one for each possible character value plus one for END), and no other information. To search, we use the digits in the key to guide us down the trie. If we reach the link to END at the same time that we run out of key digits, we have a search hit; otherwise we have a search miss. To insert a new key, we search until we reach a null link, then add nodes for each of the remaining characters in the key. Figure 15.15 is an example of a 27-way trie; Program 15.11 is an implementation of the basic (multiway) existence-trie search and insert procedures.

If the keys are of fixed length and are distinct, we can dispense with the link to the terminal character and can terminate searches when we reach the key length (see Exercise 15.60). We have already seen an example of this type of trie when we used tries to describe MSD sorting for fixed-length keys (Figure 10.10).

In one sense, this pure abstract representation of the trie structure is optimal, because it can support the search operation in time proportional to the length of a key and in space proportional to the total number of characters in the key in the worst case. But the total amount of space used could be as high as nearly \(R \) links for each character, so we seek improved implementations. As we saw with binary tries, it is worthwhile to consider the pure trie structure as a particular representation of an underlying abstract structure that is a
Program 15.11 Existence-trie search and insertion

This implementation of the search and insert existence-table ADT operations for multiway tries stores the keys implicitly within the structure of the trie. Each node contains R pointers to the next level down the trie. We follow the ith link at level t when the tth digit of the key is i.

private boolean searchR(Node h, KEY v, int d)
{ int i = digit(v, d);
 if (h == null) return false;
 if (i < 0) return true;
 return searchR(h.next[i], v, d+1);
}

boolean search(KEY key)
{ return searchR(head, key, 0); }

private Node insertR(Node h, KEY v, int d)
{ int i = digit(v, d);
 if (h == null) h = new Node();
 if (i < 0) return h;
 h.next[i] = insertR(h.next[i], v, d+1);
 return h;
}

void insert(KEY v)
{ head = insertR(head, v, 0); }

well-defined representation of our set of keys, and then to consider other representations of the same abstract structure that might lead to better performance.

Definition 15.3 A multiway trie is a multiway tree that has keys associated with each of its leaves, defined recursively as follows: The trie for an empty set of keys is a null link; the trie for a single key is a leaf containing that key; and the trie for a set of keys of cardinality greater than one is an internal node with links referring to tries for keys with each possible digit value, with the leading digit considered to be removed for the purpose of constructing the subtrees.

We assume that keys in the data structure are distinct and that no key is the prefix of another. To search in a standard multiway trie, we use the digits of the key to guide the search down the trie, with three
possible outcomes. If we reach a null link, we have a search miss; if we reach a leaf containing the search key, we have a search hit; and if we reach a leaf containing a different key, we have a search miss. All leaves have R null links and when we are implementing a symbol table, we can put the items in the leaves (as we did for binary tries) so different representations for leaf nodes and non-leaf nodes are appropriate, as in Section 15.2. We consider such an implementation in Chapter 16, and we shall consider another approach to an implementation in this chapter. In either case, the analytic results from Section 15.3 generalize to tell us about the performance characteristics of standard multiway tries.

Property 15.6 Search or insertion in a standard R-ary trie requires about $\log_R N$ byte comparisons on the average in a tree built from N random byte strings. The number of links in an R-ary trie built from N random keys is about $RN/\ln R$. The number of byte comparisons for search or insertion is no more than the number of bytes in the search key.

These results generalize those in Properties 15.3 and 15.4. We can establish them by substituting R for 2 in the proofs of those properties. As we mentioned, however, extremely sophisticated mathematics is involved in the precise analysis of these quantities. ☐

The performance characteristics listed in Property 15.6 represent an extreme example of a time–space tradeoff. On the one hand, there are a large number of unused null links—only a few nodes near the top use more than a few of their links. On the other hand, the height of a tree is small. For example, suppose that we take the typical value $R = 256$ and that we have N random 64-bit keys. Property 15.6 tells us that a search will take $(\log N)/8$ character comparisons (8 at most) and that we will use fewer than $47N$ links. If plenty of space is available, this method provides an extremely efficient alternative. We could cut the search cost to 4 character comparisons for this example by taking $R = 65536$, but that would require over $5900N$ links.

In practical applications, the space cost is likely to be even higher, because real sets of keys tend to have long stretches where parts of subsets of keys are equal. The trie for such a set of keys will have many nodes with $R − 1$ null links.
In particular, this analysis shows that it is unwise to use tries for standard Java Unicode strings, because the amount of space they consume when \(R = 65536 \) is excessive. One way to ameliorate this difficulty is to implement `digit` so as to break characters into multiple pieces, perhaps restricting attention to ASCII so that we only need half of each character (see Exercise 15.63). Next, we consider an algorithmic approach that is even more effective.

In the remainder of this section, we shall consider an alternative representation of multiway tries: the ternary search trie (TST), which help us avoid the excessive space cost normally associated with multiway tries. In a TST, each node has a character and three links, corresponding to keys whose current digits are less than, equal to, or greater than the node’s character. Using this arrangement is equivalent to implementing trie nodes as binary search trees that use as keys the characters corresponding to non-null links. In the standard existence tries of Program 15.11, trie nodes are represented by \(R + 1 \) links, and we infer the character represented by each non-null link by its index. In the corresponding existence TST, all the characters corresponding to non-null links appear explicitly in nodes—we find characters corresponding to keys only when we are traversing the middle links. A sample TST is illustrated in Figure 15.16.

The search algorithm for implementing the existence table ADT with TSTs is so straightforward as nearly to write itself; the insertion algorithm is slightly more complicated, but mirrors directly insertion in existence tries. To search, we compare the first character in the key with the character at the root. If it is less, we take the left link; if it is greater, we take the right link; and if it is equal, we take the middle link and move to the next key character. In each case, we apply the algorithm recursively. We terminate with a search miss if we encounter a null link or if we encounter the end of the search key before encountering `END` in the tree, and we terminate with a search hit if we traverse the middle link in a node whose character is `END`. To insert a new key, we search, then add new nodes for the characters in the tail of the key, just as we did for tries.

Program 15.12 gives the details of the implementation of these algorithms, and Figure 15.17 has TSTs that correspond to the tries in Figure 15.15. Since one of the most important and natural applications of multiway tries is to process strings, Program 15.12 is coded as an
Figure 15.16
Existence-trie structures
These figures show three different representations of the existence trie for the 16 words call me ishmael some years ago never mind how long precisely having little or no money: The 26-way existence trie (top); the abstract trie with null links removed (center); and the TST representation (bottom). The 26-way trie has too many links, but the TST is an efficient representation of the abstract trie.

The top two tries assume that no key is the prefix of another. For example, adding the key not would result in the key no being lost. We can add a null character to the end of each key to correct this problem, as illustrated in the TST at the bottom.
implementation of the existence table ADT interface of Program 15.10 for String keys; it is a straightforward matter to change it to use digit and therefore implement the interface for the general KEY type that we have been using (see Exercise 15.62).

Continuing the correspondence that we have been following between search trees and sorting algorithms, we see that TSTs correspond to three-way radix sorting in the same way that BSTs correspond to quicksort, tries correspond to binary quicksort, and M-way tries correspond to M-way radix sorting. Figure 10.13, which describes the recursive call structure for three-way radix sort, is a TST for that set of keys. The null-links problem for tries corresponds to the empty-bins problem for radix sorting; three-way branching provides an effective solution to both problems.

We can make TSTs more efficient in their use of space by putting keys in leaves at the point where they are distinguished and by eliminating one-way branching between internal nodes as we did for patricia. At the end of this section, we examine an implementation based on the former change.

Property 15.7 A search or insertion in a full TST requires time proportional to the key length. The number of links in a TST is at most three times the number of characters in all the keys.

In the worst case, each key character corresponds to a full R-ary node that is unbalanced, stretched out like a singly linked list. This worst case is extremely unlikely to occur in a random tree. More typically, we might expect to do $\ln R$ or fewer byte comparisons at the first level (since the root node behaves like a BST on the R different byte values) and perhaps at a few other levels (if there are keys with a common prefix and up to R different byte values on the character following the prefix), and to do only a few byte comparisons for most characters (since most trie nodes are sparsely populated with non-null links). Search misses are likely to involve only a few byte comparisons, ending at a null link high in the trie, and search hits involve only about one byte comparison per search key character, since most of them are in nodes with one-way branching at the bottom of the trie.

Actual space usage is generally less than the upper bound of three links per character, because keys share nodes at high levels in the tree. We refrain from a precise average-case analysis because TSTs are most

Figure 15.17 Existence TSTs

An existence TST has one node for each letter, but only 3 children per node, rather than 26. The top three trees in this figure are the RSTs corresponding to the insertion example in Figure 15.15, with the additional change that an end-of-key character is appended to each key. We can then remove the restriction that no key may be a prefix of another, so, for example, we can insert the key theory (bottom).
Program 15.12 Existence-TST search and insertion

This code implements the existence table ADT for string keys. Each node contains just one digit and three links: one each for keys whose next digit is less than, equal to, or greater than the corresponding digit in the search key, respectively.

The character value END is used as an end-of-string marker in the TST (this code uses 0, as in C-style strings) but strings need not end with END.

class StringET
{
 private final static int END = 0;
 private class Node
 {
 char c; Node l, m, r; }
 private Node head;
 StringET()
 { head = null; }
 private Node insertR(Node h, char[] s, int i)
 { char ch = (i < s.length) ? s[i] : END;
 if (h == null) { h = new Node(); h.c = ch; }
 if (ch == END && h.c == END) return h;
 if (s[i] < h.c) h.l = insertR(h.l, s, i);
 if (s[i] == h.c) h.m = insertR(h.m, s, i+1);
 if (s[i] > h.c) h.r = insertR(h.r, s, i);
 return h; }
 void insert(String s)
 { head = insertR(head, s.toCharArray(), 0); }
 private boolean searchR(Node h, char[] s, int i)
 { if (h == null) return false;
 if (i == s.length) return h.c == END;
 if (s[i] < h.c) return searchR(h.l, s, i);
 if (s[i] > h.c) return searchR(h.r, s, i);
 return searchR(h.m, s, i+1); // s[i] == h.c
 }
 boolean search(String s)
 { return searchR(head, s.toCharArray(), 0); }
}
These keys from an online library database illustrate the variability of the structure found in string keys in applications. Some of the characters may appropriately be modeled as random letters, some may be modeled as random digits, and still others have fixed value or structure.
Table 15.2 Empirical study of search with string keys

These relative timings for construction and search in symbol tables with string keys such as the library call numbers in Figure 15.18 confirm that TSTs, although slightly more expensive to construct, provide the fastest search for search misses with string keys, primarily because the search does not require examination of all the characters in the key.

<table>
<thead>
<tr>
<th>N</th>
<th>B</th>
<th>H</th>
<th>T</th>
<th>T^*</th>
<th>B</th>
<th>H</th>
<th>T</th>
<th>T^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5000</td>
<td>19</td>
<td>16</td>
<td>21</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>12500</td>
<td>48</td>
<td>48</td>
<td>54</td>
<td>97</td>
<td>29</td>
<td>27</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>25000</td>
<td>118</td>
<td>99</td>
<td>188</td>
<td>156</td>
<td>67</td>
<td>59</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>50000</td>
<td>230</td>
<td>191</td>
<td>333</td>
<td>255</td>
<td>137</td>
<td>113</td>
<td>70</td>
<td>65</td>
</tr>
</tbody>
</table>

Key:
- B Standard BST (Program 12.8)
- H Hashing with separate chaining ($M = N/5$) (Program 14.3)
- T TST (Program 15.12)
- T^* TST with R^2-way branch at root (Programs 15.15 and 15.16)

been considering. For example, Program 15.13 gives a program that allows particular characters in the search key to be unspecified, and prints all keys in the data structure that match the specified digits of the search key. An example is depicted in Figure 15.19. Obviously, with a slight modification, we can adapt this program to visit all the matching keys in the way that we do for sort, rather than just to print them (see Exercise 15.65).

Several other similar tasks are easy to handle with TSTs. For example, we can visit all keys in the data structure that differ from the search key in at most one digit position (see Exercise 15.66). Operations of this type are expensive or impossible with other symbol-table implementations. We shall consider in Part 6 these and many other algorithms for finding approximate matches in a string search.
CHAPTER FIFTEEN

Figure 15.19
TST-based partial-match search
To find all keys in a TST matching the pattern i* (top), we search for i in the BST for the first character. In this example, we find i (the only word that matches the pattern) after two one-way branches. For a less restrictive pattern such as *o* (bottom), we visit all nodes in the BST for the first character, but only those corresponding to o for the second character, eventually finding for and now.

Program 15.13 Partial-match searching in TSTs
With judicious use of multiple recursive calls, we can find close matches in the TST structure of Program 15.12, as shown in this program for printing all strings in the data structure that match a search string with some characters unspecified (indicated by asterisks).

private char[] w;
private void matchR(Node h, char[] s, int i)
{
 if (h == null) return;
 if (i == s.length && h.c == END)
 System.out.println(w);
 if (i == s.length) return;
 if ((s[i] == '*') || (s[i] == h.c))
 w[i] = h.c; matchR(h.m, s, i+1);
 if ((s[i] == '*') || (s[i] < h.c))
 matchR(h.l, s, i);
 if ((s[i] == '*') || (s[i] > h.c))
 matchR(h.r, s, i);
}

void match(String s)
{ w = new char[s.length()];
 matchR(head, s.toCharArray(), 0); }

Patricia offers several of the same advantages; the main practical advantage of TSTs over patricia tries is that the former access key bytes or characters rather than key bits. One reason that this difference represents an advantage is that machine operations for this purpose are found in many machines, and Java provides direct access to bytes and characters through arrays or charAt in strings. Another reason is that, in some applications, working with bytes or characters in the data structure naturally reflects the orientation of the data itself—for example, in the partial-match search problem discussed in the previous paragraph (although, as we shall see in Part 6, we can also speed up partial-match search with judicious use of bit access).

To eliminate one-way branching in TSTs, we note that most of the one-way branching occurs at the tail ends of keys, which is not a factor if we evolve to a symbol table implementation where we keep records in
Program 15.14 Hybrid TST symbol-table implementation

This class is a TST-based implementation of our standard symbol-table ADT. It uses \(R \)-way branching at the root node: the root is an array \(\text{heads} \) of \(R \) links, indexed by the first digits of the keys. Each link points to a TST built from all the keys that begin with the corresponding digits. This hybrid combines the benefits of tries (fast search through indexing, at the root) and TSTs (efficient use of space with one node per character, except at the root).

class ST
{
 private class Node
 {
 int d; ITEM item; Node l, m, r;
 Node(ITEM x) { item = x; d = END; }
 Node(int k) { d = k; }
 Node(Node h, int k) { d = k; m = h; }
 boolean internal() { return d != END; }
 }
 private Node[] heads;
 ST(int maxN)
 { heads = new Node[R]; }
 void insert(ITEM x)
 // See Program 15.15
 ITEM search(KEY v)
 // See Program 15.16
}

leaves that are placed in the highest level of the tree that distinguishes the keys. We also could maintain a byte index in the same manner as in patricia tries (see Exercise 15.72), but will omit this change, for simplicity. The combination of multiway branching and the TST representation by themselves is quite effective in many applications, but patricia-style collapse of one-way branching will further enhance performance when the keys are such that they are likely to match for long stretches (see Exercise 15.79).

Another easy improvement to TST-based search is to use a large explicit multiway node at the root. The simplest way to proceed is to keep a table of \(R \) TSTs: one for each possible value of the first letter in the keys. If \(R \) is not large, we might use the first two letters of
Program 15.15 Hybrid TST insertion for symbol-table ADT

This implementation of `insert` using TSTs keeps items in leaves, generalizing Program 15.4. We use R-way branching for the first character and a separate TST for all words beginning with each character. If the search ends at a null link, we create a leaf to hold the item. If the search ends in a leaf, we create the internal nodes needed to distinguish the key found from the search key.

```java
private Node split(Node p, Node q, int d)
    {
        int pd = digit(p.item.key(), d),
            qd = digit(q.item.key(), d);
        Node t = new Node(qd);
        if (pd < qd) { t.m = q; t.l = new Node(p, pd); }
        if (pd == qd) { t.m = split(p, q, d+1); }
        if (pd > qd) { t.m = q; t.r = new Node(p, pd); }
        return t;
    }

private Node insertR(Node h, ITEM x, int d)
    {
        if (h == null) return new Node(new Node(x), i);
        if (!h.internal()) return split(new Node(x), h, d);
        if (i < h.d) h.l = insertR(h.l, x, d);
        if (i == h.d) h.m = insertR(h.m, x, d+1);
        if (i > h.d) h.r = insertR(h.r, x, d);
        return h;
    }

void insert(ITEM x)
    {
        int i = digit(x.key(), 0);
        heads[i] = insertR(heads[i], x, 1);
    }
```

the keys (and a table of size R^2). For this method to be effective, the leading digits of the keys must be well-distributed. The resulting hybrid search algorithm corresponds to the way that a human might search for names in a telephone book. The first step is a multiway decision ("Let's see, it starts with 'A'"), followed perhaps by some two-way decisions ("It's before 'Andrews,' but after 'Aitken'") followed by sequential
Program 15.16 Hybrid TST search for symbol-table ADT

This search implementation for TSTs (built with Program 15.15) is like multiway-trie search, but we use only three, rather than R, links per node (except at the root). We use the digits of the key to travel down the tree, ending either at a null link (search miss) or at a leaf that has a key that either is (search hit) or is not (search miss) equal to the search key.

```java
private ITEM searchR(Node h, KEY v, int d)
{
    if (h == null) return null;
    if (h.internal())
    {
        int i = digit(v, d);
        if (i < h.d) return searchR(h.l, v, d);
        if (i == h.d) return searchR(h.m, v, d+1);
        if (i > h.d) return searchR(h.r, v, d);
    }
    if (equals(v, h.item.key())) return h.item;
    return null;
}
ITEM search(KEY v)
{ return searchR(heads[digit(v, 0)], v, 1); }
```

character matching ("‘Algonquin,’ ... No, ‘Algorithms’ isn’t listed, because nothing starts with ‘Algor’!").

Programs 15.14 through 15.16 comprise a TST-based implementation of the symbol-table search and insert operations that uses R-way branching at the root and that keeps items in leaves (so there is no one-way branching once the keys are distinguished). These programs are likely to be among the fastest available for searching with string or long radix keys. The underlying TST structure can also support a host of other operations.

In a symbol table that grows to be huge, we may want to adapt the branching factor to the table size. In Chapter 16, we shall see a systematic way to grow a multiway trie so that we can take advantage of multiway radix search for arbitrary file sizes.

Property 15.8 A search or insert in a TST with items in leaves (no one-way branching at the bottom) and R^e-way branching at the
root requires roughly $\ln N - t \ln R$ byte accesses for N keys that are random bytestrings. The number of links required is R^t (for the root node) plus a small constant times N.

These rough estimates follow immediately from Property 15.6. For the time cost, we assume that all but a constant number of the nodes on the search path (a few at the top) act as random BSTs on R character values, so we simply multiply the time cost by $\ln R$. For the space cost, we assume that the nodes on the first few levels are filled with R character values, and that the nodes on the bottom levels have only a constant number of character values.

For example, if we have 1 billion random bytestring keys with $R = 256$, and we use a table of size $R^2 = 65536$ at the top, then a typical search will require about $\ln 10^9 - 2 \ln 256 \approx 20.7 - 11.1 = 9.6$ byte comparisons. Using the table at the top cuts the search cost by a factor of 2. If we have truly random keys, we can achieve this performance with more direct algorithms that use the leading bytes in the key and an existence table, in the manner discussed in Section 14.6. With TSTs, we can get the same kind of performance when keys have a less random structure.

It is instructive to compare TSTs without multiway branching at the root with standard BSTs, for random keys. Property 15.8 says that TST search will require about $\ln N$ byte comparisons, whereas standard BSTs require about $\ln N$ key comparisons. At the top of the BST, the key comparisons can be accomplished with just one byte comparison, but at the bottom of the tree multiple byte comparisons may be needed to accomplish a key comparison. This performance difference is not dramatic. The reasons that TSTs are preferable to standard BSTs for string keys are that they provide a fast search miss; they adapt directly to multiway branching at the root; and (most important) they adapt well to bytestring keys that are not random, so no search takes longer than the length of a key in a TST.

Some applications may not benefit from the R-way branching at the root—for example, the keys in the library-call-number example of Figure 15.18 all begin with either L or W. Other applications may call for a higher branching factor at the root—for example, as just noted, if the keys were random integers, we would use as large a table as we could afford. We can use application-specific dependencies of this
sort to tune the algorithm to peak performance, but we should not
lose sight of the fact that one of the most attractive features of TSTs is
that TSTs free us from having to worry about such application-specific
dependencies, providing good performance without any tuning.

Perhaps the most important property of tries or TSTs with
records in leaves is that their performance characteristics are inde-
pendent of the key length. Thus, we can use them for arbitrarily long
keys. In Section 15.5, we examine a particularly effective application
of this kind.

Exercises

15.53 Write a digit method that corresponds to Program 15.9 for keys that
are of type int.

15.54 Draw the existence trie that results when you insert the words now is
the time for all good people to come the aid of their party into
an initially empty trie. Use 27-way branching.

15.55 Draw the existence TST that results when you insert the words now is
the time for all good people to come the aid of their party into
an initially empty TST.

15.56 Draw the 4-way trie that results when you insert items with the keys
01010011 00000111 00100001 01010001 11101100 00100001 10010101 0100-1010 into an initially empty trie, using 2-bit bytes.

15.57 Draw the TST that results when you insert items with the keys 0101-
0011 00000111 00100001 01010001 11101100 00100001 10010101 01001010
into an initially empty TST, using 2-bit bytes.

15.58 Draw the TST that results when you insert items with the keys 0101-
0011 00000111 00100001 01010001 11101100 00100001 10010101 01001010
into an initially empty TST, using 4-bit bytes.

15.59 Draw the TST that results when you insert items with the library-call-
number keys in Figure 15.18 into an initially empty TST.

15.60 Modify our multiway-trie search and insertion implementation (Pro-
gram 15.11) to work under the assumption that keys are (fixed-length) w-byte
words (so no end-of-key indication is necessary).

15.61 Modify our TST search and insertion implementation (Program 15.12)
to work under the assumption that keys are (fixed-length) w-byte words (so
no end-of-key indication is necessary).

15.62 Develop a TST-based implementation of Program 15.10, by modifying
Program 15.12 to use parameters of type KEY for search and insert and
using digit instead of array indexing to access characters.
Modify Program 15.11 to implement an existence table for String keys (like Program 15.12), by using parameters of type String for search and insert and using array indexing instead of digit to access characters. Assume that the strings are ASCII, so that you can use byte arrays instead of character arrays.

Run empirical studies to compare the time and space requirements of an 8-way trie built with random integers using 3-bit bytes, a 4-way trie built with random integers using 2-bit bytes, and a binary trie built from the same keys, for \(N = 10^3, 10^4, 10^5, \) and \(10^6 \) (see Exercise 15.14).

Modify Program 15.13 such that it invokes a method in an object passed as a parameter with each matching string as a parameter (instead of just printing it).

Write a method that prints all the keys in a TST that differ from the search key in at most \(k \) positions, for a given integer \(k \).

Give a full characterization of the worst-case internal path length of an \(R \)-way trie with \(N \) distinct \(w \)-bit keys.

Develop a symbol-table implementation using multiway tries that includes a clone implementation and supports the construct, count, search, insert, remove, and join operations for a symbol-table ADT, with support for client handles (see Exercises 12.6 and 12.7).

Develop a symbol-table implementation using TSTs that includes a clone implementation and supports the construct, count, search, insert, remove, and join operations for a symbol-table ADT, with support for client handles (see Exercises 12.6 and 12.7).

Write a program that prints out all keys in an \(R \)-way trie that have the same initial \(t \) bytes as a given search key.

Modify our multiway-trie search and insertion implementation (Program 15.11) to eliminate one-way branching in the way that we did for patricia tries.

Modify our TST search and insertion implementation (Program 15.12) to eliminate one-way branching in the way that we did for patricia tries.

Write a program to balance the BSTs that represent the internal nodes of a TST (rearrange them such that all their external nodes are on one of two levels).

Write a version of insert for TSTs that maintains a balanced-tree representation of all the internal nodes (see Exercise 15.73).

Give a full characterization of the worst-case internal path length of a TST with \(N \) distinct \(w \)-bit keys.

Write an implementation of \texttt{radixKey} for 80-byte ASCII string keys (see Exercise 10.19). Then write a client that uses Program 15.11 to build...
15.5 Text-String–Index Algorithms

In Section 12.7, we considered the process of building a string index, and we used binary search in a table of indexes into a text string to provide the capability to determine whether or not a given key string

a 256-way trie with \(N \) random keys, for \(N = 10^3, 10^4, 10^5, \) and \(10^6 \), using search, then insert on search miss. Instrument your code to print out the total number of nodes in each trie, the total amount of space used by each trie, and the total amount of time taken to build each trie. Compare these statistics with the corresponding statistics for a client that uses string keys (see Exercise 15.63).

15.77 Answer Exercise 15.76 for TSTs. Compare your performance results with those for tries (see Program 15.12 and Exercise 15.62).

15.78 Write an implementation of radixKey that generates random keys by shuffling a random 80-byte sequence of ASCII characters (see Exercise 10.21). Use this key generator to build a 256-way trie with \(N \) random keys, for \(N = 10^3, 10^4, 10^5, \) and \(10^6 \), using search, then insert on search miss. Compare your performance results with those for the random case (see Exercise 15.76).

15.79 Write an implementation of radixKey that generates 30-byte random strings made up of three fields: a 4-byte field with one of a set of 10 given ASCII strings; a 10-byte field with one of a set of 50 given ASCII strings; a 1-byte field with one of two given values; and a 15-byte field with random left-justified ASCII strings of letters equally likely to be four through 15 characters long (see Exercise 10.23). Use this key generator to build a 256-way trie with \(N \) random keys, for \(N = 10^3, 10^4, 10^5, \) and \(10^6 \), using search, then insert on search miss. Instrument your program to print out the total number of nodes in each trie and the total amount of time taken to build each trie. Compare your performance results with those for the random case (see Exercise 15.76).

15.80 Answer Exercise 15.79 for TSTs. Compare your performance results with those for tries.

15.81 Develop an implementation of search and insert for bytestring keys using multiway digital search trees.

15.82 Draw the 27-way DST (see Exercise 15.81) that results when you insert items with the keys now is the time for all good people to come the aid of their party into an initially empty DST.

15.83 Develop an implementation of multiway-trie search and insertion using linked lists to represent the trie nodes (as opposed to the BST representation that we use for TSTs). Run empirical studies to determine whether it is more efficient to use ordered or unordered lists, and to compare your implementation with a TST-based implementation.
appears in the text. In this section, we look at more sophisticated implementations of this ADT using multiway tries.

As in Section 12.5, we consider each position in the text to be the beginning of a string key that runs all the way to the end of the text and build a symbol table with these keys, using indexes into the text. The keys are all different (for example, they are of different lengths), and most of them are extremely long. The purpose of a search is to determine whether or not a given search key is a prefix of one of the keys in the index, which is equivalent to discovering whether the search key appears somewhere in the text string.

A search tree that is built from keys defined by indexes into a text string is called a suffix tree. We could use any algorithm that can admit variable-length keys. Trie-based methods are particularly suitable, because (except for the trie methods that do one-way branching at the tails of keys) their running time does not depend on the key length, but rather depends on only the number of digits required to distinguish
among the keys. This characteristic lies in direct contrast to, for example, hashing algorithms, which do not apply immediately to this problem because their running time is proportional to the key length.

Figure 15.20 gives examples of string indexes built with BSTs, patricia, and TSTs (with leaves). These indexes use just the keys starting at word boundaries; an index starting at character boundaries would provide a more complete index, but would use significantly more space.

Strictly speaking, even a random string text does not give rise to a random set of keys in the corresponding index (because the keys are not independent). However, we rarely work with random texts in practical indexing applications, and this analytic discrepancy will not stop us from taking advantage of the fast indexing implementations that are possible with radix methods. We refrain from discussing the detailed performance characteristics when we use each of the algorithms to build a string index, because many of the same tradeoffs that we have discussed for general symbol tables with string keys also hold for the string-index problem.

For a typical text, standard BSTs would be the first implementation that we might choose, because they are simple to implement (see Exercise 12.??). For typical applications, this solution is likely to provide good performance. One byproduct of the interdependence of the keys—particularly when we are building a string index for each character position—is that the worst case for BSTs is not a particular concern for huge texts, since unbalanced BSTs occur with only bizarre constructions.

Patricia was originally designed for the string-index application. To use Programs 15.7 and 15.6, we need only to provide an implementation of bit that, given a string pointer and an integer i, returns the ith bit of the string (see Exercise 15.89). In practice, the height of a patricia trie that implements a text string index will be logarithmic. Moreover, a patricia trie will provide fast search implementations for misses because we do not need to examine all the bytes of the key.

TSTs afford several of the performance advantages of patricia, are simple to implement, and take advantage of built-in byte-access operations that are typically found on modern machines. They also are amenable to simple implementations, such as Program 15.13, that can solve search problems more complicated than fully matching a
search key. To use TSTs to build a string index, we need to remove the code that handles ends of keys in the data structure, since we are guaranteed that no string is a prefix of another, and thus we never will be comparing strings to their ends. This modification includes changing the definition of equals to regard two strings as equal if one is a prefix of the other, as we did in Section 12.5, since we will be comparing a (short) search key against a (long) text string, starting at some position in the text string. A third change that is convenient is to keep a string index in each node, rather than a character, so that every node in the tree refers to a position in the text string (the position in the text string following the first occurrence of the character string defined by the characters on equal branches from the root to that node). Implementing these changes is an interesting and informative exercise that leads to a flexible and efficient text-string-index implementation (see Exercise 15.88).

Despite all the advantages that we have been discussing, it is important to remember that the text itself is usually fixed for typical text indexing applications, so we do not need to support the dynamic insert operations that we have become accustomed to supporting. That is, we typically build the index once, then use it for a huge number of searches, without ever changing it. Therefore, we may not need dynamic data structures like BSTs, patricia tries or TSTs at all: the basic binary search algorithm in Section 12.5 is sufficient. The primary advantage of using binary search over a dynamic data structure is the space savings. To index a text string at \(N \) positions using binary search, we need just \(N \) string indexes; in contrast, to index a string at \(N \) positions using a tree-based method, we need at least \(2N \) references (for at least two links per node) in addition to the \(N \) indexes. Text indexes are typically huge, so binary search might be preferred because it provides guaranteed logarithmic search time but uses less than one-third the amount of memory used by tree-based methods. If sufficient memory space is available, however, TSTs or tries will lead to a faster search for many applications because they move through the key without retracing its steps, and binary search does not do so (though it is possible to improve binary search to examine fewer characters in string keys, as we will see in Part 6).

If we have a huge text but plan to perform only a small number of searches, then building a full index is not likely to be justified. The
string-search problem is to determine quickly whether a given text contains a given search key (without preprocessing the text). There are numerous string-processing problems that fall between these two extremes of needing no preprocessing and requiring a full index. Part 6 is devoted to such problems.

Exercises

15.84 Draw the 26-way DST that results when you build a text-string index from the words now is the time for all good people to come the aid of their party.

15.85 Draw the 26-way trie that results when you build a text-string index from the words now is the time for all good people to come the aid of their party.

15.86 Draw the TST that results when you build a text-string index from the words now is the time for all good people to come the aid of their party, in the style of Figure 15.20.

15.87 Draw the TST that results when you build a text-string index from the words now is the time for all good people to come the aid of their party, using the implementation described in the text, where the TST contains string pointers at every node.

15.88 Modify the TST search and insertion implementations in Programs 15.15 and 15.16 to provide a TST-based string index.

15.89 Implement an interface that allows patricia to process String keys as though they were bitstrings.

15.90 Draw the Patricia trie that results when you build a text string index from the words now is the time for all good people to come the aid of their party, using a 5-bit binary coding with the ith letter in the alphabet represented by the binary representation of i.

15.91 Find a large (at least 10^6 bytes) text file on your system, and compare the height and internal path length of a standard BST, Patricia trie, and TST, when you use these methods to build an index from that file.

15.92 Run empirical studies to compare the height and internal path length of a standard BST, Patricia trie, and TST, when you use these methods to build an index from a text string consisting of N random characters from a 32-character alphabet, for $N = 10^3, 10^4, 10^5$, and 10^6.

15.93 Write an efficient program to determine the longest repeated sequence in a huge text string.

15.94 Write an efficient program to determine the 10-character sequence that occurs most frequently in a huge text string.

15.95 Build a string index that supports an operation that returns the number of occurrences of its argument in the indexed text, and supports a search
operation that calls a method in a client-supplied object for all the text positions that match the search key.

15.96 Describe a text string of \(N \) characters for which a TST-based string index will perform particularly badly. Estimate the cost of building an index for the same string with a BST.

15.97 Suppose that we want to build an index for a random \(N \)-bit string, for bit positions that are a multiple of 16. Run empirical studies to determine which of the bytesizes 1, 2, 4, 8, or 16 leads to the lowest running times to construct a TST-based index, for \(N = 10^3, 10^4, 10^5, \text{and } 10^6 \).