
C H A P T E R F I F T E E N

Radix Search

SEVERAL SEARCH METHODS proceed by examining the search
keys one small piece at a time, rather than using full compar-

isons between keys at each step. These methods, called radix-search
methods, operate in a manner entirely analogous to the radix-sorting
methods that we discussed in Chapter 10. They are useful when the
pieces of the search keys are easily accessible, and they can provide
efficient solutions to a variety of practical search tasks.

We use the same abstract model that we used in Chapter 10: De-
pending on the context, a key may be a word (a fixed-length sequence
of bytes) or a string (a variable-length sequence of bytes). We treat keys
that are words as numbers represented in a base-R number system, for
various values of R (the radix), and work with individual digits of the
numbers. We view strings as variable-length numbers terminated by
a special symbol so that, for both fixed- and variable-length keys, we
can base all our algorithms on the abstract operation “extract the ith
digit from a key,” including a convention to handle the case that the
key has fewer than i digits. Accordingly, all of our implementations
are based on the two-argument static method digit from Chapter 10
that implements this operation. For clarity, we use the name bit when
R is 2.

This convention gives us the flexibility to accomodate compli-
cated keys and items by define a class that extends KEY or to accomo-
date simple keys by defining appropriate digit or bit methods for

635

636 C H A P T E R F I F T E E N

Program 15.1 Binary key type

This code extends a key class such as Program 12.2, which defines
integer-valued keys, to provide radix methods with access to the key
bits. It provides a bit method that returns the indicated bit from the
key (an integer that is 0 or 1), the constants bitsword and R, and a
toString method that returns a representation of the key as a string of
bits.

class bitsKey extends Key

{

public final static int bitsword = 31;
public final static int R = 2;

public int bit(int B)

{ return (val >> (bitsword-B-1)) & 1; }

public String toString()

{ String s = new String("");

for (int i = 0; i < bitsword; i++)

s = s + bit(i);

return s;

}

}

primitive types. For example, for integer keys, we could replace KEY

by int in our code and add to each class the following code:

private final static int bitsword = 31;
private final static int R = 2;
private int bit(int val, int B)

{ return (val >> (bitsword-B-1)) & 1; }

Program 15.1 illustrates how to achieve the same effect for class key
types by extending a key class to define the bit method (along with
B, bitsword, and toString). In this case, we would add to each class
the code

private final static int R = bitsKey.R;
private int bit(KEY v, int B)

{ return ((bitsKey) v).bit(B); }

The same approaches apply to implementing digit, using the tech-
niques for various types of keys that are described in Section 10.1.
Program 15.9 in Section 15.4 is an example of such a class.

R A D I X S E A R C H §15.1 637

Figure 15.1
Binary representation of

single-character keys

A 00001
S 10011
E 00101
R 10010
C 00011
H 01000
I 01001
N 01110
G 00111
X 11000
M 01101
P 10000
L 01100

As we did in Chapter 10, we use
the 5-bit binary representation of
i to represent the ith letter in the
alphabet, as shown here for several
sample keys, for the small exam-
ples in the figures in this chapter.
We consider the bits as numbered
from 0 to 4, from left to right.

The principal advantages of radix-search methods are that the
methods provide reasonable worst-case performance without the com-
plication of balanced trees; they provide an easy way to handle
variable-length keys; some of them allow space savings by storing part
of the key implicitly within the search structure; and they can pro-
vide fast access to data, competitive with both binary search trees and
hashing. The disadvantages are that some of the methods can make
inefficient use of space, and that, as with radix sorting, performance
can suffer if efficient access to the bytes of the keys is not available.

First, we examine several search methods that proceed by ex-
amining the search keys 1 bit at a time, using them to travel through
binary tree structures. We examine a series of methods, each one
correcting a problem inherent in the previous one, culminating in an
ingenious method that is useful for a variety of search applications.

Next, we examine generalizations to R-way trees. Again, we
examine a series of methods, culminating in a flexible and efficient
method that can support a basic symbol-table implementation and
numerous extensions.

In radix search, we usually examine the most significant digits of
the keys first. Many of the methods directly correspond to MSD radix-
sorting methods, in the same way that BST-based search corresponds
to quicksort. In particular, we shall see the analog to the linear-time
sorts of Chapter 10—constant-time search methods based on the same
principle.

We also consider the specific application of using radix-search
structures for string processing, including building indexes for large
text strings. The methods that we consider provide natural solutions
for this application, and help to set the stage for us to consider more
advanced string-processing tasks in Part 6.

15.1 Digital Search Trees

The simplest radix-search method is based on use of digital search trees
(DSTs). The search and insert algorithms are identical to binary tree
search except for one difference: We branch in the tree not according to
the result of the comparison between the full keys, but rather according
to selected bits of the key. At the first level, the leading bit is used;
at the second level, the second leading bit is used; and so on, until an

638 §15.1 C H A P T E R F I F T E E N

00 11
A

00 11
E

00 11
C

00 11
G

00 11
H

00 11
N

00 11
M

00 11
S

00 11
R

00 11
X

00 11
A

00 11
E

00 11
C

00 11
G

00 11
H

00 11
N

00 11
S

00 11
R

00 11
X

Figure 15.2
Digital search tree and inser-

tion
In an unsuccessful search for M =
01101 in this sample digital search
tree (top), we move left at the root
(since the first bit in the binary rep-
resentation of the key is 0) then
right (since the second bit is 1),
then right, then left, to finish at the
null left link below N. To insert M
(bottom), we replace the null link
where the search ended with a link
to the new node, just as we do
with BST insertion.

Program 15.2 Binary digital search tree

To develop a symbol-table implementation using DSTs, we modify the
implementations of search and insert in the standard BST implemen-
tation (see Program 12.8) as shown in this implementation of search.
Rather than doing a full key comparison, we decide whether to move
left or right on the basis of testing a single bit (the leading bit) of the
key. The recursive function calls have a third argument so that we can
move the bit position to be tested to the right as we move down the
tree. We use a private static bit method to test bits (see text). These
same changes apply to implementation of insert; otherwise, we use all
the code from Program 12.8.

private ITEM searchR(Node h, KEY v, int i)

{

if (h == null) return null;

if (equals(v, h.item.key())) return h.item;

if (bit(v, i) == 0)

return searchR(h.l, v, i+1);

else return searchR(h.r, v, i+1);

}

ITEM search(KEY key)

{ return searchR(head, key, 0); }

external node is encountered. Program 15.2 is an implementation of
search; the implementation of insert is similar. Rather than using less

to compare keys, we assume that a bit method is available to access
individual bits in keys. This code is virtually the same as the code for
binary tree search (see Program 12.8), but has substantially different
performance characteristics, as we shall see.

We saw in Chapter 10 that we need to pay particular attention to
equal keys in radix sorting; the same is true in radix search. Generally,
we assume in this chapter that all the key values to appear in the
symbol table are distinct. We can do so without loss of generality
because we can use one of the methods discussed in Section 12.1
to support applications that have records with duplicate keys. It is
important to focus on distinct key values in radix search, because key
values are intrinsic components of several of the data structures that
we shall consider.

R A D I X S E A R C H §15.1 639

00 11
A

00 11
E

00 11
C

00 11
G

00 11
H

00 11
I

00 11
N

00 11
S

00 11
R

00 11
A

00 11
E

00 11
C

00 11
H

00 11
I

00 11
N

00 11
S

00 11
R

00 11
A

00 11
E

00 11
C

00 11
H

00 11
I

00 11
S

00 11
R

00 11
A

00 11
E

00 11
C

00 11
H

00 11
S

00 11
R

00 11
A

00 11
E

00 11
C

00 11
S

00 11
R

00 11
A

00 11
E

00 11
S

00 11
R

00 11
A

00 11
E

00 11
S

00 11
A

00 11
S

00 11
A

Figure 15.3
Digital search tree construc-

tion
This sequence depicts the result of
inserting the keys A S E R C H I
N G into an initially empty digital
search tree.

Figure 15.1 gives binary representations for the one-letter keys
used in other figures in the chapter. Figure 15.2 gives an example of
insertion into a DST; Figure 15.3 shows the process of inserting keys
into an initially empty tree.

The bits of the keys control search and insertion, but note that
DSTs do not have the ordering property that characterizes BSTs. That
is, it is not necessarily the case that nodes to the left of a given node
have smaller keys or that nodes to the right have larger keys, as would
be the case in a BST with distinct keys. It is true that keys on the left
of a given node are smaller than keys on the right—if the node is at
level k, they all agree in the first k bits, but the next bit is 0 for the keys
on the left and is 1 for the keys on the right—but the node’s key could
itself could be the smallest, largest, or any value in between of all the
keys in that node’s subtree.

DSTs are characterized by the property that each key is some-
where along the path specified by the bits of the key (in order from
left to right). This property is sufficient for the search and insert
implementations in Program 15.2 to operate properly.

Suppose that the keys are words of a fixed length, all consisting
of w bits. Our requirement that keys are distinct implies that N ≤
2w, and we normally assume that N is significantly smaller than 2w,
since otherwise key-indexed search (see Section 12.2) would be the
appropriate algorithm to use. Many practical problems fall within
this range. For example, DSTs are appropriate for a symbol table
containing up to 105 records with 32-bit keys (but perhaps not as
many as 106 records), or for any number of 64-bit keys. Digital tree
search also works for variable-length keys.

The worst case for trees built with digital search is much better
than that for binary search trees, if the number of keys is large and
the key lengths are small relative to the number of keys. The length of
the longest path in a digital search tree is likely to be relatively small
for many applications (for example, if the keys comprise random bits).
In particular, the longest path is certainly limited by the length of the
longest key; moreover, if the keys are of a fixed length, then the search
time is limited by the length. Figure 15.4 illustrates this fact.

Property 15.1 A search or insertion in a digital search tree requires
about lgN comparisons on the average, and about 2 lgN comparisons

640 §15.1 C H A P T E R F I F T E E N

00 11
P

00 11
H

00 11
D

00 11
B

00 11
A

00 11
P

00 11
H

00 11
D

00 11
B

00 11
P

00 11
H

00 11
D

00 11
P

00 11
H

00 11
P

Figure 15.4
Digital search tree, worst case
This sequence depicts the result of
inserting the keys P = 10000, H =
01000, D = 00100, B = 00010, and
A = 00001 into an initially empty
digital search tree. The sequence
of trees appears degenerate, but
the path length is limited by the
length of the binary representation
of the keys. Except for 00000, no
other 5-bit key will increase the
height of the tree any further.

in the worst case, in a tree built from N random keys. The number of
comparisons is never more than the number of bits in the search key.

We can establish the stated average-case and worst-case results for
random keys with an argument similar to one given for a more natural
problem in the next section, so we leave this proof for an exercise there
(see Exercise 15.31). It is based on the simple intuitive notion that the
unseen portion of a random key should be equally likely to begin with
a 0 bit as a 1 bit, so half should fall on either side of any node. Each
time that we move down the tree, we use up a key bit, so no search
in a digital search tree can require more comparisons than there are
bits in the search key. For the typical condition where we have w-bit
words and the number of keys N is far smaller than the total possible
number of keys 2w, the path lengths are close to lgN , so the number
of comparisons is far smaller than the number of bits in the keys for
random keys.

Figure 15.5 shows a large digital search tree made from random
7-bit keys. This tree is nearly perfectly balanced. DSTs are attractive
in many practical applications because they provide near-optimal per-
formance even for huge problems, with little implementation effort.
For example, a digital search tree built from 32-bit keys (or four 8-bit
characters) is guaranteed to require fewer than 32 comparisons, and
a digital search tree built from 64-bit keys (or eight 8-bit characters)
is guaranteed to require fewer than 64 comparisons, even if there are
billions of keys. For large N , these guarantees are comparable to the
guarantee provided by red–black trees, but are achieved with about the
same implementation effort as is required for standard BSTs (which
can promise only guaranteed performance proportional to N2). This
feature makes the use of digital search trees an attractive alternative
to use of balanced trees in practice for implementing the search and
insert symbol-table operations, provided that efficient access to key
bits is available.

Exercises

.15.1 Draw the DST that results when you insert items with the keys E A S Y
Q U T I O N in that order into an initially empty tree, using the binary encoding
given in Figure 15.1.

15.2 Give an insertion sequence for the keys A B C D E F G that results in a
perfectly balanced DST that is also a valid BST.

R A D I X S E A R C H §15.2 641

Figure 15.5
Digital search tree example
This digital search tree, built by in-
sertion of about 200 random keys,
is as well-balanced as its counter-
parts in Chapter 15.

15.3 Give an insertion sequence for the keys A B C D E F G that results in
a perfectly balanced DST with the property that every node has a key smaller
than those of all the nodes in its subtree.

.15.4 Draw the DST that results when you insert items with the keys 0101-
0011 00000111 00100001 01010001 11101100 00100001 10010101 01001010
in that order into an initially empty tree.

15.5 Can we keep records with duplicate keys in DSTs, in the same way that
we can in BSTs? Explain your answer.

15.6 Run empirical studies to compare the height and internal path length
of a DST built by insertion of N random 32-bit keys into an initially empty
tree with the same measures of a standard binary search tree and a red–black
tree (Chapter 13) built from the same keys, for N = 103, 104, 105, and 106.

◦15.7 Give a full characterization of the worst-case internal path length of a
DST with N distinct w-bit keys.

• 15.8 Implement the remove operation for a DST-based symbol table.

• 15.9 Implement the select operation for a DST-based symbol table.

◦15.10 Describe how you could compute the height of a DST made from a
given set of keys, in linear time, without building the DST.

15.2 Tries

In this section, we consider a search tree that allows us to use the bits
of the keys to guide the search, in the same way that DSTs do, but that
keeps the keys in the tree in order, so that we can support recursive
implementations of sort and other symbol-table operations, as we did
for BSTs. The idea is to store keys only at the bottom of the tree, in leaf
nodes. The resulting data structure has a number of useful properties
and serves as the basis for several effective search algorithms. It was
first discovered by de la Briandais in 1959, and, because it is useful for
retrieval, it was given the name trie by Fredkin in 1960. Ironically, in

642 §15.2 C H A P T E R F I F T E E N

A C
E

H I R S

A C
E

H

R S

Figure 15.6
Trie search and insertion
Keys in a trie are stored in leaves
(nodes with both links null); null
links in nodes that are not leaves
correspond to bit patterns not
found in any keys in the trie.

In a successful search for the
key H = 01000 in this sample trie
(top), we move left at the root
(since the first bit in the binary rep-
resentation of the key is 0), then
right (since the second bit is 1),
where we find H, which is the only
key in the tree that begins with 01.
None of the keys in the trie begin
with 101 or 11; these bit patterns
lead to the two null links in the trie
that are in non-leaf nodes.

To insert I (bottom), we need to
add three non-leaf nodes: one cor-
responding to 01, with a null link
corresponding to 011; one corre-
sponding to 010, with a null link
corresponding to 0101; and one
corresponding to 0100 with H =
01000 in a leaf on its left and I =
01001 in a leaf on its right.

conversation, we usually pronounce this word “try-ee” or just “try,” so
as to distinguish it from “tree.” For consistency with the nomenclature
that we have been using, we perhaps should use the name “binary
search trie,” but the term trie is universally used and understood. We
consider the basic binary version in this section, an important variation
in Section 15.3, and the basic multiway version and variations in
Sections 15.4 and 15.5.

We can use tries for keys that are either a fixed number of bits or
are variable-length bitstrings. To simplify the discussion, we start by
assuming that no search key is the prefix of another. For example, this
condition is satisfied when the keys are of fixed length and are distinct.

In a trie, we keep the keys in the leaves of a binary tree. Recall
from Section 5.4 that a leaf in a tree is a node with no children, as
distinguished from an external node, which we interpret as a null child.
In a binary tree, a leaf is an internal node whose left and right links are
both null. Keeping keys in leaves instead of internal nodes allows us
to use the bits of the keys to guide the search, as we did with DSTs in
Section 15.1, while still maintaining the basic invariant at each node
that all keys whose current bit is 0 fall in the left subtree and all keys
whose current bit is 1 fall in the right subtree.

Definition 15.1 A trie is a binary tree that has keys associated with
each of its leaves, defined recursively as follows: The trie for an empty
set of keys is a null link; the trie for a single key is a leaf containing
that key; and the trie for a set of keys of cardinality greater than one is
an internal node with left link referring to the trie for the keys whose
initial bit is 0 and right link referring to the trie for the keys whose
initial bit is 1, with the leading bit considered to be removed for the
purpose of constructing the subtrees.

Each key in the trie is stored in a leaf, on the path described by the
leading bit pattern of the key. Conversely, each leaf contains the only
key in the trie that begins with the bits defined by the path from the
root to that leaf. Null links in nodes that are not leaves correspond to
leading-bit patterns that do not appear in any key in the trie. Therefore,
to search for a key in a trie, we just branch according to its bits, as we
did with DSTs, but we do not do comparisons at internal nodes. We
start at the left of the key and the top of the trie, and take the left link
if the current bit is 0 and the right link if the current bit is 1, moving

R A D I X S E A R C H §15.2 643

Program 15.3 Trie search

This function uses the bits of the key to control the branching on the
way down the trie, in the same way as in Program 15.2 for DSTs. There
are three possible outcomes: if the search reaches a leaf (with both
links null), then that is the unique node in the trie that could contain
the record with key v, so we test whether that node indeed contains v
(search hit) or some key whose leading bits match v (search miss). If
the search reaches a null link, then the parent’s other link must not be
null, so there is some other key in the trie that differs from the search
key in the corresponding bit, and we have a search miss. This code
assumes that the keys are distinct, and (if the keys may be of different
lengths) that no key is a prefix of another. The item member is not used
in non-leaf nodes.

private ITEM searchR(Node h, KEY v, int d)

{

if (h == null) return null;

if (h.l == null && h.r == null)
{ if (equals(v, h.item.key()))

return h.item; else return null; }

if (bit(v, d) == 0)

return searchR(h.l, v, d+1);

else return searchR(h.r, v, d+1);

}

ITEM search(KEY key)

{ return searchR(head, key, 0); }

one bit position to the right in the key. A search that ends on a null
link is a miss; a search that ends on a leaf can be completed with one
key comparison, since that node contains the only key in the trie that
could be equal to the search key. Program 15.3 is an implementation
of this process.

To insert a key into a trie, we first perform a search, as usual. If
the search ends on a null link, we replace that link with a link to a new
leaf containing the key, as usual. But if the search ends on a leaf, we
need to continue down the trie, adding an internal node for every bit
where the search key and the key that was found agree, ending with
both keys in leaves as children of the internal node corresponding to
the first bit position where they differ. Figure 15.6 gives an example of

644 §15.2 C H A P T E R F I F T E E N

Program 15.4 Trie insertion

To insert a new node into a trie, we search as usual, then distinguish the
two cases that can occur for a search miss.

If the miss was not on a leaf, then we replace the null link that
caused us to detect the miss with a link to a new node, as usual.

If the miss was on a leaf, then we use a function split to make
one new internal node for each bit position where the search key and
the key found agree, finishing with one internal node for the leftmost bit
position where the keys differ. The switch statement in split converts
the two bits that it is testing into a number to handle the four possible
cases. If the bits are the same (case 002 = 0 or 112 = 3), then we
continue splitting; if the bits are different (case 012 = 1 or 102 = 2),
then we stop splitting.

Node split(Node p, Node q, int d)

{ Node t = new Node(null);

KEY v = p.item.key(), w = q.item.key();

switch(bit(v, d)*2 + bit(w, d))

{ case 0: t.l = split(p, q, d+1); break;

case 1: t.l = p; t.r = q; break;

case 2: t.r = p; t.l = q; break;

case 3: t.r = split(p, q, d+1); break;

}

return t;
}

private Node insertR(Node h, ITEM x, int d)

{

if (h == null)

return new Node(x);

if (h.l == null && h.r == null)

return split(new Node(x), h, d);

if (bit(x.key(), d) == 0)

h.l = insertR(h.l, x, d+1);

else h.r = insertR(h.r, x, d+1);

return h;

}

void insert(ITEM x)

{ head = insertR(head, x, 0); }

R A D I X S E A R C H §15.2 645

A C
E

H I

N

R S

A C
E

H I R S

A C
E

H

R S

A C
E

R S

A E

R S

A E

S

A S

A

Figure 15.7
Trie construction
This sequence depicts the result of
inserting the keys A S E R C H I N
into an initially empty trie.

trie search and insertion; Figure 15.7 shows the process of constructing
a trie by inserting keys into an initially empty trie. Program 15.4 is a
full implementation of the insertion algorithm.

We do not access null links in leaves, and we do not store items in
non-leaf nodes, so we could save space by using a pair of derived classes
to define nodes as being one of these two types (see Exercise 15.22).
For the moment, we will take the simpler route of using the single node
type that we have been using for BSTs, DSTs, and other binary tree
structures, with internal nodes characterized by null keys and leaves
characterized by null links, knowing that we could reclaim the space
wasted because of this simplification, if desired. In Section 15.3, we
will see an algorithmic improvement that avoids the need for multiple
node types.

We now shall consider a number of basic of properties of tries,
which are evident from the definition and these examples.

Property 15.2 The structure of a trie is independent of the key in-
sertion order: There is a unique trie for any given set of distinct keys.

This fundamental fact, which follows immediately by induction on the
subtrees, is a distinctive feature of tries: for all the other search tree
structures that we have considered, the tree that we construct depends
both on the set of keys and on the order in which we insert those keys.

The left subtree of a trie has all the keys that have 0 for the leading
bit; the right subtree has all the keys that have 1 for the leading bit.
This property of tries leads to an immediate correspondence with radix
sorting: binary trie search partitions the file in exactly the same way
as does binary quicksort (see Section 10.2). This correspondence is
evident when we compare the trie in Figure 15.6 with Figure 10.4, the
partitioning diagram for binary quicksort (after noting that the keys
are slightly different); it is analogous to the correspondence between
binary tree search and quicksort that we noted in Chapter 12.

In particular, unlike DSTs, tries do have the property that keys ap-
pear in order, so we can implement the sort and select symbol-table op-
erations in a straightforward manner (see Exercises 15.19 and 15.20).
Moreover, tries are as well-balanced as DSTs.

Property 15.3 Insertion or search for a random key in a trie built
from N random (distinct) bitstrings requires about lgN bit compar-

646 §15.2 C H A P T E R F I F T E E N

isons on the average. The worst-case number of bit comparisons is
bounded only by the number of bits in the search key.

We need to exercise care in analyzing tries because of our insistence
that the keys be distinct, or, more generally, that no key be a prefix
of another. One simple model that accommodates this assumption
requires the keys to be a random (infinite) sequence of bits—we take
the bits that we need to build the trie.

The average-case result then comes from the following proba-
bilistic argument. The probability that each of the N keys in a random
trie differ from a random search key in at least one of the leading t bits
is (

1− 1
2t
)N
.

Subtracting this quantity from 1 gives the probability that one of the
keys in the trie matches the search key in all of the leading t bits. In
other words,

1−
(
1− 1

2t
)N

is the probability that the search requires more than t bit comparisons.
From elementary probabilistic analysis, the sum for t ≥ 0 of the prob-
abilities that a random variable is > t is the average value of that
random variable, so the average search cost is given by∑

t≥0

(
1−

(
1− 1

2t
)N)

.

Using the elementary approximation (1 − 1/x)x ∼ e−1, we find the
search cost to be approximately∑

t≥0

(
1− e−N/2t

)
.

The summand is extremely close to 1 for approximately lgN terms
with 2t substantially smaller than N ; it is extremely close to 0 for all
the terms with 2t substantially greater than N ; and it is somewhere
between 0 and 1 for the few terms with 2t ≈ N . So the grand total
is about lgN . Computing a more precise estimate of this quantity
requires using extremely sophisticated mathematics (see reference sec-
tion). This analysis assumes that w is sufficiently large that we never
run out of bits during a search, but taking into account the true value
of w will only reduce the cost.

R A D I X S E A R C H §15.2 647

H I

H

Figure 15.8
Binary trie worst case
This sequence depicts the result of
inserting the keys H = 01000 and I
= 01001 into an initially empty bi-
nary trie. As it is in DSTs (see Fig-
ure 15.4), the path length is limited
by the length of the binary repre-
sentation of the keys; as illustrated
by this example, however, paths
could be that long even with only
two keys in the trie.

In the worst case, we could get two keys that have a huge number
of equal bits, but this event happens with vanishingly small probability.
The probability that the worst-case result quoted in Property 15.3 will
not hold is exponentially small (see Exercise 15.30).

Another approach to analyzing tries is to generalize the approach
that we used to analyze BSTs (see Property 12.6). The probability that
k keys start with a 0 bit and N − k keys start with a 1 bit is

(
N
k

)
/2N ,

so the external path length is described by the recurrence

CN = N +
1

2N
∑
k

((N
k

)(
Ck + CN−k

))
.

This recurrence is similar to the quicksort recurrence that we solved
in Section 7.2, but it is much more difficult to solve. Remarkably, the
solution is precisely N times the expression for the average search cost
that we derived for Property 15.3 (see Exercise 15.27). Studying the
recurrence itself gives insight into why tries have better balance than
do BSTs: The probability is much higher that the split will be near the
middle than that it will be anywhere else, so the recurrence is more
like the mergesort recurrence (approximate solution N lgN) than like
the quicksort recurrence (approximate solution 2N lnN).

An annoying feature of tries, and another one that distinguishes
them from the other types of search trees that we have seen, is the one-
way branching required when keys have bits in common. For example,
keys that differ in only the final bit always require a path whose length
is equal to the key length, no matter how many keys there are in the
tree, as illustrated in Figure 15.8. The number of internal nodes can
be somewhat larger than the number of keys.

Property 15.4 A trie built from N random w-bit keys has about
N/ ln 2 ≈ 1.44N nodes on the average.

By modifying the argument for Property 15.3, we can write the ex-
pression ∑

t≥0

(
2t
(

1−
(
1− 1

2t
)N)−N(1− 1

2t
)N−1

)
for the average number of nodes in an N -key trie (see Exercise 15.28).
The mathematical analysis that yields the stated approximate value for
this sum is much more difficult than the argument that we gave for

648 §15.2 C H A P T E R F I F T E E N

Figure 15.9
Trie example
This trie, built by inserting about
200 random keys, is well-balanced,
but has 44 percent more nodes
than might otherwise be neces-
sary, because of one-way branch-
ing. (Null links on leaves are not
shown.)

Property 15.3, because many terms contribute values that are not 0 or
1 to the value of the sum (see reference section).

We can verify these results empirically. For example, Figure 15.9
shows a big trie, which has 44 percent more nodes than does the BST
or the DST built with the same set of keys but nevertheless is well
balanced, with a near-optimal search cost. Our first thought might be
that the extra nodes would raise the average search cost substantially,
but this suspicion is not valid—for example, we would increase the
average search cost by only 1 even if we were to double the number of
nodes in a balanced trie.

For convenience in the implementations in Programs 15.3
and 15.4, we assumed that the keys are of fixed length and are distinct,
so that we could be certain that the keys would eventually distinguish
themselves and that the programs could process 1 bit at a time and
never run out of key bits. For convenience in the analyses in Prop-
erties 15.2 and 15.3, we implicitly assumed that the keys have an ar-
bitrary number of bits, so that they eventually distinguish themselves
except with tiny (exponentially decaying) probability. A direct off-
shoot of these assumptions is that both the programs and the analyses
apply when the keys are variable-length bitstrings, with a few caveats.

To use the programs as they stand for variable-length keys, we
need to extend our restriction that the keys be distinct to say that
no key be a prefix of another. This restriction is met automatically
in some applications, as we shall see in Section 15.5. Alternatively,
we could handle such keys by keeping information in internal nodes,
because each prefix that might need to be handled corresponds to some
internal node in the trie (see Exercise 15.32).

For sufficiently long keys comprising random bits, the average-
case results of Properties 15.2 and 15.3 still hold. In the worst case,
the height of a trie is still limited by the number of bits in the longest

R A D I X S E A R C H §15.2 649

keys. This cost could be excessive if the keys are huge and perhaps
have some uniformity, as might arise in encoded character data. In
the next two sections, we consider methods of reducing trie costs for
long keys. One way to shorten paths in tries is to collapse one-way
branches into single links—we discuss an elegant and efficient way to
accomplish this task in Section 15.3. Another way to shorten paths in
tries is to allow more than two links per node—this approach is the
subject of Section 15.4.

Exercises

.15.11 Draw the trie that results when you insert items with the keys E A S Y
Q U T I O N in that order into an initially empty trie.

15.12 What happens when you use Program 15.4 to insert a record whose
key is equal to some key already in the trie?

15.13 Draw the trie that results when you insert items with the keys 0101-
0011 00000111 00100001 01010001 11101100 00100001 10010101 01001010
into an initially empty trie.

15.14 Run empirical studies to compare the height, number of nodes, and
internal path length of a trie built by insertion of N random 32-bit keys into
an initially empty trie with the same measures of a standard binary search tree
and a red–black tree (Chapter 13) built from the same keys, for N = 103, 104,
105, and 106(see Exercise 15.6).

15.15 Give a full characterization of the worst-case internal path length of a
trie with N distinct w-bit keys.

15.16 Implement a lazy count operation for the trie-based symbol table im-
plementation of Programs 15.3 and 15.4.

15.17 Add an integer field N to Node and modify the trie code in Programs 15.3
and 15.4 to implement an eager count operation that takes constant time.

• 15.18 Implement the remove operation for the trie-based symbol table imple-
mentation of Programs 15.3 and 15.4.

◦15.19 Implement the select operation for the trie-based symbol table imple-
mentation of Programs 15.3 and 15.4.

15.20 Implement the sort operation for the trie-based symbol table implemen-
tation of Programs 15.3 and 15.4.

.15.21 Write a program that prints out all keys in a trie that have the same
initial t bits as a given search key.

◦15.22 Use a pair of derived classes to develop implementations of search and
insert using tries with non-leaf nodes that contain links but no items and with
leaves that contain items but no links.

650 §15.3 C H A P T E R F I F T E E N

15.23 Modify Programs 15.4 and 15.3 to keep the search key in a machine
register and to shift one bit position to access the next bit when moving down
a level in the trie.

15.24 Modify Programs 15.4 and 15.3 to maintain a table of 2r tries, for a
fixed constant r, and to use the first r bits of the key to index into the table and
the standard algorithms with the remainder of the key on the trie accessed.
This change saves about r steps unless the table has a significant number of
null entries.

15.25 What value should we choose for r in Exercise 15.24, if we have
N random keys (which are sufficiently long that we can assume them to be
distinct)?

15.26 Write a program to compute the number of nodes in the trie corre-
sponding to a given set of distinct fixed-length keys, by sorting them and
comparing adjacent keys in the sorted list.

• 15.27 Prove by induction that N
∑

t≥0

(
1 − (1 − 2−t)N

)
is the solution to

the quicksort-like recurrence that is given after Property 15.3 for the external
path length in a random trie.

• 15.28 Derive the expression given in Property 15.4 for the average number
of nodes in a random trie.

• 15.29 Write a program to compute the average number of nodes in a random
trie of N nodes and print the exact value, accurate to 10−3, for N = 103, 104,
105, and 106.

•• 15.30 Prove that the height of a trie built from N random bitstrings is about
2 lgN . Hint: Consider the birthday problem (see Property 14.2).

• 15.31 Prove that the average cost of a search in a DST built from random
keys is asymptotically lgN (see Properties 15.1 and 15.2).

15.32 Modify Programs 15.3 and 15.4 to handle variable-length bitstrings
under the sole restriction that records with duplicate keys are not kept in the
data structure. In particular, decide upon a convention for the return value of
bit(v, d) for the case that d is greater than the length of v.

15.33 Develop a trie-based class that implements an existence table ADT for
w-bit integers. Your should include a constructor and support insert, and
search operations, where search and insert take integer arguments, and search
returns false for search miss and true for search hit (see Program 15.10).

15.3 Patricia Tries

Trie-based search as described in Section 15.2 has two inconvenient
flaws. First, the one-way branching leads to the creation of extra
nodes in the trie, which seem unnecessary. Second, there are two

R A D I X S E A R C H §15.3 651

Program 15.5 Patricia trie symbol-table implementation

Nodes in Patricia tries contain a field that indicates which bit position
distinguishes keys on the right from keys on the left. We use a dummy
node head at the top of the trie that is always the result of a search for
the null (all 0s) key. The root of the trie is at head.l (the link head.r is
unused).

class ST

{

private class Node

{ ITEM item; Node l, r; int bit;
Node(ITEM x, int i) { item = x; bit = i; }

}

private Node head;

ST(int maxN)

{ head = new Node(null, -1); head.l = head; }

void insert(ITEM x)

// See Program 15.6

ITEM search(KEY key)

// See Program 15.7

public String toString()

// See Program 15.8

}

different types of nodes in the trie, which leads to complications (see
Exercise 15.22). In 1968, Morrison discovered a way to avoid both
of these problems, in a method that he named patricia (“practical
algorithm to retrieve information coded in alphanumeric”). Morrison
developed his algorithm in the context of string-indexing applications
of the type that we shall consider in Section 15.5, but it is equally
effective as a symbol-table implementation. Like DSTs, patricia tries
allow search for N keys in a tree with just N nodes; like tries, they
require only about lgN bit comparisons and one full key comparison
per search, and they support other ADT operations. Moreover, these
performance characteristics are independent of key length, and the
data structure is suitable for variable-length keys.

Starting with the standard trie data structure, we avoid one-way
branching via a simple device: we put into each node the index of

652 §15.3 C H A P T E R F I F T E E N

S
H

E
C

A
4

3

2

1

R
4

0

Figure 15.10
Patricia search
In a successful search for R =
10010 in this sample patricia trie
(top), we move right (since bit 0 is
1), then left (since bit 4 is 0), which
brings us to R (the only key in the
tree that begins with 1***0). On the
way down the tree, we check only
the key bits indicated in the num-
bers over the nodes (and ignore the
keys in the nodes). When we first
reach a link that points up the tree,
we compare the search key against
the key in the node pointed to by
the up link, since that is the only
key in the tree that could be equal
to the search key.

In an unsuccessful search for I
= 01001, we move left at the root
(since bit 0 of the key is 0), then
take the right (up) link (since bit 1
is 1) and find that H (the only key
in the trie that begins with 01) is
not equal to I.

Program 15.6 Patricia-trie search

The recursive function searchR returns the unique node that could con-
tain the record with key v. It travels down the trie, using the bits of the
tree to control the search, but tests only 1 bit per node encountered—the
one indicated in the bit field. It terminates the search when it encoun-
ters an external link, one which points up the tree. The search function
search calls searchR, then tests the key in that node to determine
whether the search is a hit or a miss.

private ITEM searchR(Node h, KEY v, int i)

{

if (h.bit <= i) return h.item;

if (bit(v, h.bit) == 0)

return searchR(h.l, v, h.bit);

else return searchR(h.r, v, h.bit);
}

ITEM search(KEY key)

{ ITEM t = searchR(head.l, key, -1);

if (t == null) return null;

if (equals(t.key(), key)) return t;

return null;

}

the bit to be tested to decide which path to take out of that node.
Thus, we jump directly to the bit where a significant decision is to
be made, bypassing the bit comparisons at nodes where all the keys
in the subtree have the same bit value. Moreover, we avoid external
nodes via another simple device: we store data in internal nodes and
replace links to external nodes with links that point back upwards to
the correct internal node in the trie. These two changes allow us to
represent tries with binary trees comprising nodes with a key and two
links (and an additional field for the index), which we call patricia
tries. With patricia tries, we store keys in nodes as with DSTs, and
we traverse the tree according to the bits of the search key, but we do
not use the keys in the nodes on the way down the tree to control the
search; we merely store them there for possible later reference, when
the bottom of the tree is reached.

R A D I X S E A R C H §15.3 653

S
H

E
C

A
4

3

2

N
I

1

4

2 R
4

0

S
H

E
C

A
4

3

2

I

1

4 R
4

0

Figure 15.11
Patricia-trie insertion
To insert I into the sample patri-
cia trie in Figure 15.10, we add
a new node to check bit 4, since
H = 01000 and I = 01001 differ in
only that bit (top). On a subse-
quent search in the trie that comes
to the new node, we want to check
H (left link) if bit 4 of the search
key is 0; if the bit is 1 (right link),
the key to check is I.

To insert N = 01110 (bottom),
we add a new node in between H
and I to check bit 2, since that bit
distinguishes N from H and I.

As hinted in the previous paragraph, it is easier to follow the
mechanics of the algorithm if we first take note that we can regard
standard tries and patricia tries as different representations of the same
abstract trie structure. For example, the tries in Figure 15.10 and
at the top in Figure 15.11, which illustrate search and insertion for
patricia tries, represent the same abstract structure as do the tries in
Figure 15.6. The search and insertion algorithms for patricia tries use,
build, and maintain a concrete representation of the abstract trie data
structure different from the search and insertion algorithms discussed
in Section 15.2, but the underlying trie abstraction is the same.

Program 15.6 is an implementation of the patricia-trie search
algorithm. The method differs from trie search in three ways: there
are no explicit null links, we test the indicated bit in the key instead
of the next bit, and we end with a search key comparison at the point
where we follow a link up the tree. It is easy to test whether a link
points up, because the bit indices in the nodes (by definition) increase
as we travel down the tree. To search, we start at the root and proceed
down the tree, using the bit index in each node to tell us which bit
to examine in the search key—we go right if that bit is 1, left if it is
0. The keys in the nodes are not examined at all on the way down
the tree. Eventually, an upward link is encountered: each upward link
points to the unique key in the tree that has the bits that would cause
a search to take that link. Thus, if the key at the node pointed to by
the first upward link encountered is equal to the search key, then the
search is successful; otherwise, it is unsuccessful.

Figure 15.10 illustrates search in a patricia trie. For a miss due
to the search taking a null link in a trie, the corresponding patricia trie
search will take a course somewhat different from that of standard trie
search, because the bits that correspond to one-way branching are not
tested at all on the way down the trie. For a search ending at a leaf
in a trie, the patricia-trie search ends up comparing against the same
key as the trie search, but without examining the bits corresponding
to one-way branching in the trie.

The implementation of insertion for patricia tries mirrors the two
cases that arise in insertion for tries, as illustrated in Figure 15.11. As
usual, we gain information on where a new key belongs from a search
miss. For tries, the miss can occur either because of a null link or
because of a key mismatch at a leaf. For patricia tries, we need to

654 §15.3 C H A P T E R F I F T E E N

S

H

E

C

A
4

3

2

1

R
4

0

S
E

C
A
4

3

2

R
4

0

S
E

A
4

2

R
4

0

S
E

A
4

2

0

S
A
4

0

A
4

Figure 15.12
Patricia-trie construction
This sequence depicts the result
of inserting the keys A S E R C H
into an initially empty patricia trie.
Figure 15.11 depicts the result of
inserting I and then N into the tree
at the bottom.

do more work to decide which type of insertion is needed, because
we skipped the bits corresponding to one-way branching during the
search. A patricia-trie search always ends with a key comparison, and
this key carries the information that we need. We find the leftmost bit
position where the search key and the key that terminated the search
differ, then search through the trie again, comparing that bit position
against the bit positions in the nodes on the search path. If we come
to a node that specifies a bit position higher than the bit position that
distinguishes the key sought and the key found, then we know that
we skipped a bit in the patricia-trie search that would have led to
a null link in the corresponding trie search, so we add a new node
for testing that bit. If we never come to a node that specifies a bit
position higher than the one that distinguishes the key sought and the
key found, then the patricia-trie search corresponds to a trie search
ending in a leaf, and we add a new node that distinguishes the search
key from the key that terminated the search. We always add just one
node, which references the leftmost bit that distinguishes the keys,
where standard trie insertion might add multiple nodes with one-way
branching before reaching that bit. That new node, besides providing
the bit-discrimination that we need, will also be the node that we use
to store the new item.

We use the convention that the leftmost link (the one correspond-
ing to a key that is all 0 bits) does not point to any internal node. We
need such a convention because the number of external links exceeds
the number of internal nodes by precisely 1 in every binary tree. To
make sure that no search ever follows that link, we further adopt the
convention for class types that only the null key has all 0 bits. This
convention is easy to enforce by implementing bit so as to always re-
turn 0 for the null key and to return 1 after exhausting the bits of any
non-null key (see Exercise 15.34). Figure 15.12 shows the initial stages
of the construction of a sample trie, which illustrate these conventions.

Program 15.7 is an implementation of the patricia-trie–insertion
algorithm. The code follows directly from the description in the previ-
ous paragraph, with the additional observation that we view links to
nodes with bit indices that are not larger than the current bit index as
links to external nodes. The insertion code merely tests this property
of the links, but does not have to move keys or links around at all. The
upward links in patricia tries seem mysterious at first, but the decisions

R A D I X S E A R C H §15.3 655

Program 15.7 Patricia-trie insertion

To insert a key into a patricia trie, we begin with a search. The function
searchR from Program 15.6 gets us to a unique key in the tree that
must be distinguished from the key to be inserted. We determine the
leftmost bit position at which this key and the search key differ, then
use the recursive function insertR to travel down the tree and to insert
a new node containing v at that point.

In insertR, there are two cases, corresponding to the two cases
illustrated in Figure 15.11. The new node could replace an internal link
(if the search key differs from the key found in a bit position that was
skipped), or an external link (if the bit that distinguishes the search key
from the found key was not needed to distinguish the found key from
all the other keys in the trie).

This code assumes that KEY is a class type and depends upon bit
being implemented so that null is the only key that is all 0s (see text).

private Node insertR(Node h, ITEM x, int i, Node p)
{ KEY v = x.key();

if ((h.bit >= i) || (h.bit <= p.bit))

{

Node t = new Node(x, i);

t.l = bit(v, t.bit) == 0 ? t : h;

t.r = bit(v, t.bit) == 0 ? h : t;

return t;

}

if (bit(v, h.bit) == 0)

h.l = insertR(h.l, x, i, h);

else h.r = insertR(h.r, x, i, h);

return h;

}

void insert(ITEM x)
{ int i = 0;

KEY v = x.key();

ITEM t = searchR(head.l, v, -1);

KEY w = (t == null) ? null : t.key();

if (v == w) return;

while (bit(v, i) == bit(w, i)) i++;

head.l = insertR(head.l, x, i, head);

}

656 §15.3 C H A P T E R F I F T E E N

Program 15.8 Patricia-trie sort

This recursive procedure shows the records in a patricia trie in order of
their keys. We imagine the items to be in (virtual) external nodes, which
we can identify by testing when the bit index on the current node is not
larger than the bit index on its parent. Otherwise, this program is a
standard inorder traversal.

private String toStringR(Node h, int i)

{

if (h == head) return "";

if (h.bit <= i) return h.item + "\n";

return toStringR(h.l, h.bit) +

toStringR(h.r, h.bit);

}

public String toString()
{ return toStringR(head.l, -1); }

about which links to use when each node is inserted are surprisingly
straightforward. The end result is that using one node type rather than
two simplifies the code substantially.

By construction, all external nodes below a node with bit index
k begin with the same k bits (otherwise, we would have created a node
with bit index less than k to distinguish two of them). Therefore, we
can convert a patricia trie to a standard trie by creating the appropriate
internal nodes between nodes where bits are skipped and by replacing
links that point up the tree with links to external nodes (see Exer-
cise 15.52). However, Property 15.2 does not quite hold for patricia
tries, because the assignment of keys to internal nodes does depend on
the order in which the keys are inserted. The structure of the internal
nodes is independent of the key-insertion order, but external links and
the placement of the key values are not.

An important consequence of the fact that a patricia trie repre-
sents an underlying standard trie structure is that we can use a recursive
inorder traversal to visit the nodes in order, as demonstrated in the im-
plementation given in Program 15.8. We visit just the external nodes,
which we identify by testing for nonincreasing bit indices.

Patricia is the quintessential radix search method: it manages to
identify the bits that distinguish the search keys and to build them into

R A D I X S E A R C H §15.3 657

Figure 15.13
Patricia-trie example
This patricia trie, built by inser-
tion of about 200 random keys, is
equivalent to the trie of Figure 15.9
with one-way branching removed.
The resulting tree is nearly per-
fectly balanced.

a data structure (with no surplus nodes) that quickly leads from any
search key to the only key in the data structure that could be equal to
the search key. Figure 15.13 shows the patricia trie for the same keys
used to build the trie of Figure 15.9—the patricia trie not only has 44
percent fewer nodes than the standard trie, but also is nearly perfectly
balanced.

Property 15.5 Insertion or search for a random key in a patricia trie
built from N random bitstrings requires about lgN bit comparisons
on the average, and about 2 lgN bit comparisons in the worst case.
The number of bit comparisons is never more than the length of the
key.

This fact is an immediate consequence of Property 15.3, since paths in
patricia tries are no longer than paths in the corresponding trie. The
precise average-case analysis of patricia is difficult; it turns out that
patricia involves one fewer comparison, on the average, than does a
standard trie (see reference section).

Table 15.1 gives empirical data supporting the conclusion that
DSTs, standard binary tries, and patricia tries have comparable perfor-
mance (and that they provide search times comparable to or shorter
than the balanced-tree methods of Chapter 13) when keys are integers,
and certainly should be considered for symbol-table implementations
even with keys that can be represented as short bitstrings, taking into
account the various straightforward tradeoffs that we have noted.

Note that the search cost given in Property 15.5 does not grow
with the key length. By contrast, the search cost in a standard trie
typically does depend on the length of the keys—the first bit position
that differs in two given keys could be arbitrarily far into the key. All
the comparison-based search methods that we have considered also
depend on the key length—if two keys differ in only their rightmost
bit, then comparing them requires time proportional to their length.

658 §15.3 C H A P T E R F I F T E E N

Table 15.1 Empirical study of trie implementations

These relative timings for construction and search in symbol tables with
random sequences of 32-bit integers confirm that digital methods are
competitive with balanced-tree methods, even for keys that are ran-
dom bits. Performance differences are more remarkable when keys are
long and are not necessarily random (see Table 15.2), or when careful
attention is paid to making the key-bit–access code efficient (see Exer-
cise 15.23).

construction search hits

N B D T P B D T P

1250 1 1 1 1 0 1 1 0

2500 2 2 4 3 1 1 2 1

5000 4 5 7 7 3 2 3 2

12500 18 15 20 18 8 7 9 7

25000 40 36 44 41 20 17 20 17

50000 81 80 99 90 43 41 47 36

100000 176 167 269 242 103 85 101 92

200000 411 360 544 448 228 179 211 182

Key:
B Red–black BST (Programs 12.8 and 13.6)
D DST (Program 15.2)
T Trie (Programs 15.3 and 15.4)
P Patricia trie (Programs 15.6 and 15.7)

Furthermore, hashing methods always require time proportional to
the key length for a search, to compute the hash function. But patricia
immediately takes us to the bits that matter, and typically involves
testing less than lgN of them. This effect makes patricia (or trie
search with one-way branching removed) the search method of choice
when the search keys are long.

For example, suppose that we have a computer that can efficiently
access 8-bit bytes of data, and we have to search among millions of
1000-bit keys. Then patricia would require accessing only about 20
bytes of the search key for the search, plus one 125-byte equality com-

R A D I X S E A R C H §15.3 659

parison, whereas hashing would require accessing all 125 bytes of the
search key to compute the hash function, plus a few equality com-
parisons, and comparison-based methods would require 20 to 30 full
key comparisons. It is true that key comparisons, particularly in the
early stages of a search, require only a few byte comparisons, but later
stages typically involve many more bytes. We shall consider compar-
ative performance of various methods for searching with lengthy keys
again in Section 15.5.

Indeed, there needs to be no limit at all on the length of search
keys for patricia. Patricia is particularly effective in applications with
variable-length keys that are potentially huge, such as the one discussed
in Section 15.5. With patricia, we generally can expect that the number
of bit inspections required for a search among N records, even with
huge keys, will be roughly proportional to lgN .

Exercises
15.34 Modify the implementation of the two-parameter bit method in the
text after Program 15.1 to return 1 if its second parameter is not less than
bitsword and to always return 0 if its first parameter is null.

15.35 What happens when you use Program 15.7 to insert a record whose
key is equal to some key already in the trie?

.15.36 Draw the patricia trie that results when you insert the keys E A S Y Q U
T I O N in that order into an initially empty trie.

.15.37 Draw the patricia trie that results when you insert the keys 01010011
00000111 00100001 01010001 11101100 00100001 10010101 01001010 in
that order into an initially empty trie.

◦15.38 Draw the patricia trie that results when you insert the keys 01001010
10010101 00100001 11101100 01010001 00100001 00000111 01010011 in
that order into an initially empty trie.

15.39 Run empirical studies to compare the height and internal path length
of a patricia trie built by insertion of N random 32-bit keys into an initially
empty trie with the same measures of a standard binary search tree and a
red–black tree (Chapter 13) built from the same keys, for N = 103, 104, 105,
and 106(see Exercises 15.6 and 15.14).

15.40 Give a full characterization of the worst-case internal path length of a
patricia trie with N distinct w-bit keys.

15.41 Implement a lazy count operation for the patricia-based symbol table
implementation of Programs 15.5 through 15.7.

15.42 Add an integer field N to Node and modify the patricia code in Pro-
grams 15.5 through 15.7 to implement an eager count operation that takes
constant time.

660 §15.4 C H A P T E R F I F T E E N

15.43 Implement the select operation for a patricia-based symbol table.

• 15.44 Implement the remove operation for a patricia-based symbol table.

• 15.45 Implement the join operation for patricia-based symbol tables.

◦15.46 Write a program that prints out all keys in a patricia trie that have the
same initial t bits as a given search key.

15.47 Modify standard trie search and insertion (Programs 15.3 and 15.4)
to eliminate one-way branching in the same manner as for patricia tries. If
you have done Exercise 15.22, start with that program instead.

15.48 Modify patricia search and insertion (Programs 15.6 and 15.7) to
maintain a table of 2r tries, as described in Exercise 15.24.

15.49 Show that each key in a patricia trie is on its own search path, and is
therefore encountered on the way down the tree during a search operation as
well as at the end.

15.50 Modify patricia search (Program 15.6) to compare keys on the way
down the tree to improve search-hit performance. Run empirical studies to
evaluate the effectiveness of this change (see Exercise 15.49).

15.51 Use a patricia trie to build a data structure that can support an existence
table ADT for w-bit integers (see Exercise 15.33).

• 15.52 Write programs that convert a patricia trie to a standard trie on the
same keys, and vice versa.

15.4 Multiway Tries and TSTs

For radix sorting, we found that we could get a significant improve-
ment in speed by considering more than 1 bit at a time. The same is
true for radix search: By examining r bits at a time, we can speed up
the search by a factor of r. However, there is a catch that makes it
necessary for us to be more careful in applying this idea than we had
to be for radix sorting. The problem is that considering r bits at a time
corresponds to using tree nodes with R = 2r links, and that can lead
to a considerable amount of wasted space for unused links.

R A D I X S E A R C H §15.4 661

Program 15.9 Radix key type example

This code is an example of extending a key class such as Program 12.2,
which defines integer-valued keys, to provide radix methods with access
to the key digits. It provides a digit method that returns the indicated
digit from the decimal representation of the key (an integer that is 0
through 9), and the constants R and END. Numbers of type int have
only ten decimal digits; our convention is to return END if a client asks
for a digit beyond the end of the number.

class radixKey extends Key

{

public final static int R = 10;

public final static int END = -1;
private int[] p =

{1000000000, 100000000, 10000000,

1000000, 100000, 10000, 1000, 100, 10, 1 };

public int digit(int B)

{ int v = val;

if (B > 9) return END;

return (v/p[B]) % 10;

}

}

Program 15.9 is an example of a key type implementation that
provides access to key digits. As with bit, if we were to use this type
of key, we would add to each class the code

private final static int R = radixKey.R;
private int digit(KEY v, int i)

{ return ((radixKey) v).digit(i); }

to give us the flexibility to substitute a direct implementation for keys
that are primitive types (see Exercise 15.53).

In the (binary) tries of Section 15.2, the nodes corresponding to
key bits have two links: one for the case when the key bit is 0, and the
other for the case when the key bit is 1. The appropriate generalization
is to R-ary tries, where we have nodes with R links corresponding to
key digits, one for each possible digit value. Keys are stored in leaves
(nodes with all links null). To search in an R-way trie, we start at
the root and at the leftmost key digit, and use the key digits to guide

662 §15.4 C H A P T E R F I F T E E N

.0155

.1590 .1593

.2699

.3186 .3533 .3964

.5380

.6041 .6910

Figure 15.14
R-way trie for base-10 num-

bers
This figure depicts the trie that dis-
tinguishes the set of numbers

.396465048

.353336658

.318693642

.015583409

.159369371

.691004885

.899854354

.159072306

.604144269

.269971047

.538069659

(see Figure 12.1). Each node has
10 links (one for each possible
digit). At the root, link 0 points
to the trie for keys with first digit
0 (there is only one); link 1 points
to the trie for keys with first digit 1
(there are two), and so forth. None
of these numbers has first digit 4,
7, 8, or 9, so those links are null.
There is only one number for each
of the first digits 0, 2, and 5, so
there is a leaf containing the ap-
propriate number for each of those
digits. The rest of the structure is
built recursively, moving one digit
to the right.

us down the tree. We go down the ith link (and move to the next
digit) if the digit value is i. If we reach a leaf, it contains the only
key in the trie with leading digits corresponding to the path that we
have traversed, so we can compare that key with the search key to
determine whether we have a search hit or a search miss. If we reach
a null link, we know that we have a search miss, because that link
corresponds to a leading-digit pattern not found in any keys in the
trie. Figure 15.14 shows a 10-way trie that represents a sample set of
decimal numbers. As we discussed in Chapter 10, numbers typically
seen in practice are distinguished with relatively few trie nodes. This
same effect for more general types of keys is the basis for a number of
efficient search algorithms.

Before doing a full symbol-table implementation with multiple
node types and so forth, we begin our study of multiway tries by con-
centrating on the existence-table problem, where we have only keys
(no records or associated information) and want to develop algorithms
to insert a key into a data structure and to search the data structure to
tell us whether or not a given key has been inserted. Program 15.10
defines an ADT for existence tables. The existence-table implementa-
tion that we consider next clearly exposes the structure of multiway
tries, is useful in its own right, and paves the way for using tries in a
standard symbol-table ADT implementation.

Definition 15.2 The existence trie corresponding to a set of keys is
defined recursively as follows: The trie for an empty set of keys is a
null link; and the trie for a nonempty set of keys is an internal node
with links referring to the trie for each possible key digit, with the
leading digit considered to be removed for the purpose of constructing
the subtrees.

For simplicity, we assume in this definition that no key is the
prefix of another. Typically, we enforce this restriction by ensuring that
the keys are distinct and either are of fixed length or have a termination

R A D I X S E A R C H §15.4 663

f

o

r

i

s

n

o

w

t

h

e

i

m

e

i

s

n

o

w

t

h

e

i

m

e

i

s

n

o

w

t

h

e

Figure 15.15
R-way existence trie search

and insertion
The 26-way trie for the words now,
is, and the (top) has nine nodes:
the root plus one for each letter.
The nodes are labeled in these di-
agrams, but we do not use explicit
node labels in the data structure,
because each node label can be
inferred from the position of the
link to it in its parents’ link array.

To insert the key time, we
branch off the existing node for t
and add new nodes for i, m, and e
(center); to insert the key for, we
branch off the root and add new
nodes for f, o, and r.

Program 15.10 Existence-table ADT

This interface defines the simplest kind of symbol table, where we have
keys but no associated information. Clients can insert a key and search
to determine whether or not a given key has been inserted.

class ET // ADT interface

{ // implementations and private members hidden

ET()

boolean search(KEY)

void insert(KEY)

}

digit with value END, a sentinel that is used for no other purpose. The
point of this definition is that we can use existence tries to implement
existence tables, without storing any information within the trie; the
information is all implicitly defined within the trie structure. Each
node has R + 1 links (one for each possible character value plus one
for END), and no other information. To search, we use the digits in the
key to guide us down the trie. If we reach the link to END at the same
time that we run out of key digits, we have a search hit; otherwise we
have a search miss. To insert a new key, we search until we reach a
null link, then add nodes for each of the remaining characters in the
key. Figure 15.15 is an example of a 27-way trie; Program 15.11 is
an implementation of the basic (multiway) existence-trie search and
insert procedures.

If the keys are of fixed length and are distinct, we can dispense
with the link to the terminal character and can terminate searches
when we reach the key length (see Exercise 15.60). We have already
seen an example of this type of trie when we used tries to describe
MSD sorting for fixed-length keys (Figure 10.10).

In one sense, this pure abstract representation of the trie struc-
ture is optimal, because it can support the search operation in time
proportional to the length of a key and in space proportional to the
total number of characters in the key in the worst case. But the to-
tal amount of space used could be as high as nearly R links for each
character, so we seek improved implementations. As we saw with
binary tries, it is worthwhile to consider the pure trie structure as a
particular representation of an underlying abstract structure that is a

664 §15.4 C H A P T E R F I F T E E N

Program 15.11 Existence-trie search and insertion

This implementation of the search and insert existence-table ADT oper-
ations for multiway tries stores the keys implicitly within the structure
of the trie. Each node contains R pointers to the next level down the
trie. We follow the ith link at level t when the tth digit of the key is i.

private boolean searchR(Node h, KEY v, int d)

{ int i = digit(v, d);

if (h == null) return false;

if (i < 0) return true;

return searchR(h.next[i], v, d+1);

}

boolean search(KEY key)

{ return searchR(head, key, 0); }

private Node insertR(Node h, KEY v, int d)

{ int i = digit(v, d);

if (h == null) h = new Node();
if (i < 0) return h;

h.next[i] = insertR(h.next[i], v, d+1);

return h;

}

void insert(KEY v)

{ head = insertR(head, v, 0); }

well-defined representation of our set of keys, and then to consider
other representations of the same abstract structure that might lead to
better performance.

Definition 15.3 A multiway trie is a multiway tree that has keys
associated with each of its leaves, defined recursively as follows: The
trie for an empty set of keys is a null link; the trie for a single key is
a leaf containing that key; and the trie for a set of keys of cardinality
greater than one is an internal node with links referring to tries for
keys with each possible digit value, with the leading digit considered
to be removed for the purpose of constructing the subtrees.

We assume that keys in the data structure are distinct and that no
key is the prefix of another. To search in a standard multiway trie, we
use the digits of the key to guide the search down the trie, with three

R A D I X S E A R C H §15.4 665

possible outcomes. If we reach a null link, we have a search miss; if we
reach a leaf containing the search key, we have a search hit; and if we
reach a leaf containing a different key, we have a search miss. All leaves
have R null links and when we are implementing a symbol table, we
can put the items in the leaves (as we did for binary tries) so different
representations for leaf nodes and non-leaf nodes are appropriate, as
in Section 15.2. We consider such an implementation in Chapter 16,
and we shall consider another approach to an implementation in this
chapter. In either case, the analytic results from Section 15.3 generalize
to tell us about the performance characteristics of standard multiway
tries.

Property 15.6 Search or insertion in a standard R-ary trie requires
about logRN byte comparisons on the average in a tree built from N

random bytestrings. The number of links in anR-ary trie built fromN

random keys is about RN/ lnR. The number of byte comparisons for
search or insertion is no more than the number of bytes in the search
key.

These results generalize those in Properties 15.3 and 15.4. We can
establish them by substituting R for 2 in the proofs of those properties.
As we mentioned, however, extremely sophisticated mathematics is
involved in the precise analysis of these quantities.

The performance characteristics listed in Property 15.6 represent an
extreme example of a time–space tradeoff. On the one hand, there are
a large number of unused null links—only a few nodes near the top
use more than a few of their links. On the other hand, the height of
a tree is small. For example, suppose that we take the typical value
R = 256 and that we have N random 64-bit keys. Property 15.6
tells us that a search will take (lgN)/8 character comparisons (8 at
most) and that we will use fewer than 47N links. If plenty of space is
available, this method provides an extremely efficient alternative. We
could cut the search cost to 4 character comparisons for this example
by taking R = 65536, but that would require over 5900N links.

In practical applications, the space cost is likely to be even higher,
because real sets of keys tend to have long stretches where parts of
subsets of keys are equal. The trie for such a set of keys will have
many nodes with R− 1 null links.

666 §15.4 C H A P T E R F I F T E E N

In particular, this analysis shows that it is unwise to use tries
for standard Java Unicode strings, because the amount of space they
consume when R = 65536 is excessive. One way to ameliorate this
difficulty is to implement digit so as to break characters into multiple
pieces, perhaps restricting attention to ASCII so that we only need
half of each character (see Exercise 15.63). Next, we consider an
algorithmic approach that is even more effective.

In the remainder of this section, we shall consider an alterna-
tive representation of multiway tries: the ternary search trie (TST),
which help us avoid the excessive space cost normally associated with
multiway tries. In a TST, each node has a character and three links,
corresponding to keys whose current digits are less than, equal to, or
greater than the node’s character. Using this arrangement is equivalent
to implementing trie nodes as binary search trees that use as keys the
characters corresponding to non-null links. In the standard existence
tries of Program 15.11, trie nodes are represented by R + 1 links, and
we infer the character represented by each non-null link by its index.
In the corresponding existence TST, all the characters corresponding
to non-null links appear explicitly in nodes—we find characters cor-
responding to keys only when we are traversing the middle links. A
sample TST is illustrated in Figure 15.16.

The search algorithm for implementing the existence table ADT
with TSTs is so straightforward as nearly to write itself; the insertion
algorithm is slightly more complicated, but mirrors directly insertion
in existence tries. To search, we compare the first character in the
key with the character at the root. If it is less, we take the left link;
if it is greater, we take the right link; and if it is equal, we take the
middle link and move to the next key character. In each case, we
apply the algorithm recursively. We terminate with a search miss if
we encounter a null link or if we encounter the end of the search key
before encountering END in the tree, and we terminate with a search
hit if we traverse the middle link in a node whose character is END. To
insert a new key, we search, then add new nodes for the characters in
the tail of the key, just as we did for tries.

Program 15.12 gives the details of the implementation of these
algorithms, and Figure 15.17 has TSTs that correspond to the tries in
Figure 15.15. Since one of the most important and natural applications
of multiway tries is to process strings, Program 15.12 is coded as an

R A D I X S E A R C H §15.4 667

a

g

o

c

a

l

l

h

a

v

i

n

g

o

w

i

s

h

m

a

e

l

l

i

t

t

l

e

o

n

g

m

e i

n

d

o

n

e

y

n

e

v

e

r

o

o

r

p

r

e

c

i

s

e

l

y

s

o

m

e

y

e

a

r

s

a

g

o

c

a

l

l

h

a

v

i

n

g

o

w

i

s

h

m

a

e

l

l

i

t

t

l

e

o

n

g

m

e i

n

d

o

n

e

y

n

e

v

e

r

o

o

r

p

r

e

c

i

s

e

l

y

s

o

m

e

y

e

a

r

s

c

a

g

o

a

l

l

m

i

h

o

a

v

i

n

g

w

s

h

m

a

e

l

l

o

i

t

t

l

e

n

g

e

i

n

d

o

n

e

y

s

n

e

v

e

r

o

p

o

r

r

e

c

i

s

e

l

y

o

m

e

y

e

a

r

s

Figure 15.16
Existence-trie structures
These figures show three different
representations of the existence trie
for the 16 words call me ishmael
some years ago never mind how
long precisely having little
or no money: The 26-way exis-
tence trie (top); the abstract trie
with null links removed (center);
and the TST representation (bot-
tom). The 26-way trie has too
many links, but the TST is an effi-
cient representation of the abstract
trie.

The top two tries assume that
no key is the prefix of another.
For example, adding the key not
would result in the key no being
lost. We can add a null character
to the end of each key to correct
this problem, as illustrated in the
TST at the bottom.

668 §15.4 C H A P T E R F I F T E E N

n

i

f

o

r

s

o

w

t

h

e

o

r

y

i

m

e

n

i

f

o

r

s

o

w

t

h

e i
m

e

n

i
s

o

w

t

h

e i
m

e

n

i

s

o

w

t

h

e

Figure 15.17
Existence TSTs
An existence TST has one node for
each letter, but only 3 children per
node, rather than 26. The top three
trees in this figure are the RSTs cor-
responding to the insertion exam-
ple in Figure 15.15, with the ad-
ditional change that an end-of-key
character is appended to each key.
We can then remove the restric-
tion that no key may be a prefix of
another, so, for example, we can
insert the key theory (bottom).

implementation of the existence table ADT interface of Program 15.10
for String keys; it is a straightforward matter to change it to use digit
and therefore implement the interface for the general KEY type that we
have been using (see Exercise 15.62).

Continuing the correspondence that we have been following be-
tween search trees and sorting algorithms, we see that TSTs correspond
to three-way radix sorting in the same way that BSTs correspond to
quicksort, tries correspond to binary quicksort, and M -way tries cor-
respond to M -way radix sorting. Figure 10.13, which describes the
recursive call structure for three-way radix sort, is a TST for that set of
keys. The null-links problem for tries corresponds to the empty-bins
problem for radix sorting; three-way branching provides an effective
solution to both problems.

We can make TSTs more efficient in their use of space by putting
keys in leaves at the point where they are distinguished and by eliminat-
ing one-way branching between internal nodes as we did for patricia.
At the end of this section, we examine an implementation based on the
former change.

Property 15.7 A search or insertion in a full TST requires time pro-
portional to the key length. The number of links in a TST is at most
three times the number of characters in all the keys.

In the worst case, each key character corresponds to a full R-ary node
that is unbalanced, stretched out like a singly linked list. This worst
case is extremely unlikely to occur in a random tree. More typically,
we might expect to do lnR or fewer byte comparisons at the first
level (since the root node behaves like a BST on the R different byte
values) and perhaps at a few other levels (if there are keys with a
common prefix and up to R different byte values on the character
following the prefix), and to do only a few byte comparisons for most
characters (since most trie nodes are sparsely populated with non-null
links). Search misses are likely to involve only a few byte comparisons,
ending at a null link high in the trie, and search hits involve only about
one byte comparison per search key character, since most of them are
in nodes with one-way branching at the bottom of the trie.

Actual space usage is generally less than the upper bound of three
links per character, because keys share nodes at high levels in the tree.
We refrain from a precise average-case analysis because TSTs are most

R A D I X S E A R C H §15.4 669

Program 15.12 Existence-TST search and insertion

This code implements the existence table ADT for string keys. Each
node contains just one digit and three links: one each for keys whose
next digit is less than, equal to, or greater than the corresponding digit
in the search key, respectively.

The character value END is used as an end-of-string marker in the
TST (this code uses 0, as in C-style strings) but strings need not end with
END.

class StringET

{

private final static int END = 0;

private class Node

{ char c; Node l, m, r; }

private Node head;
StringET()

{ head = null; }

private Node insertR(Node h, char[] s, int i)

{ char ch = (i < s.length) ? s[i] : END;

if (h == null) { h = new Node(); h.c = ch; }

if (ch == END && h.c == END) return h;

if (s[i] < h.c) h.l = insertR(h.l, s, i);

if (s[i] == h.c) h.m = insertR(h.m, s, i+1);

if (s[i] > h.c) h.r = insertR(h.r, s, i);

return h;

}

void insert(String s)

{ head = insertR(head, s.toCharArray(), 0); }

private boolean searchR(Node h, char[] s, int i)
{

if (h == null) return false;

if (i == s.length) return h.c == END;

if (s[i] < h.c) return searchR(h.l, s, i);

if (s[i] > h.c) return searchR(h.r, s, i);

return searchR(h.m, s, i+1); // s[i] == h.c

}

boolean search(String s)

{ return searchR(head, s.toCharArray(), 0); }

}

670 §15.4 C H A P T E R F I F T E E N

Figure 15.18
Sample string keys (library

call numbers)

LDS 361 H 4
LDS 485 N 4 H 317
LDS 625 D 73 1986
LJN 679 N 48 1985
LQP 425 M 56 1991
LTK 6015 P 63 1988
LVM 455 M 67 1974
WAFR 5054 33
WKG 6875
WLSOC 2542 30
WPHIL 4060 2 55
WPHYS 39 1 30
WROM 5350 65 5
WUS 10706 7 10
WUS 12692 4 27

These keys from an online library
database illustrate the variability of
the structure found in string keys in
applications. Some of the charac-
ters may appropriately be modeled
as random letters, some may be
modeled as random digits, and still
others have fixed value or struc-
ture.

useful in practical situations where keys neither are random nor are
derived from bizarre worst-case constructions.

The prime virtue of using TSTs is that they adapt gracefully
to irregularities in search keys that are likely to appear in practical
applications. There are two main effects. First, keys in practical
applications come from large character sets, and usage of particular
characters in the character sets is far from uniform—for example, a
particular set of strings is likely to use only a small fraction of the
possible characters. With TSTs, we can use a 256-character ASCII
encoding or a 65536-character Unicode encoding without having to
worry about the excessive costs of nodes with 256- or 65536-way
branching, and without having to determine which sets of characters
are relevant. Unicode strings in non-Roman alphabets can have thou-
sands of characters—TSTs are especially appropriate for standard Java
String keys that consist of such characters. Second, keys in practical
applications often have a structured format, differing from application
to application, perhaps using only letters in one part of the key, only
digits in another part of the key, and special characters as delimiters
(see Exercise 15.79). For example, Figure 15.18 gives a list of library
call numbers from an online library database. For such keys, some
of the trie nodes might be represented as unary nodes in the TST (for
places where all keys have delimiters); some might be represented as
10-node BSTs (for places where all keys have digits); and still others
might be represented as 26-node BSTs (for places where all keys have
letters). This structure develops automatically, without any need for
special analysis of the keys.

A second practical advantage of TST-based search over many
other algorithms is that search misses are likely to be extremely effi-
cient, even when the keys are long. Often, the algorithm uses just a few
byte comparisons (and chases a few references) to complete a search
miss. As we discussed in Section 15.3, a search miss in a hash table
with N keys requires time proportional to the key length (to compute
the hash function), and at least lgN key comparisons in a search tree.
Even patricia requires lgN bit comparisons for a random search miss.

Table 15.2 gives empirical data in support of the observations in
the previous two paragraphs.

A third reason that TSTs are attractive is that they support op-
erations more general than the symbol-table operations that we have

R A D I X S E A R C H §15.4 671

Table 15.2 Empirical study of search with string keys

These relative timings for construction and search in symbol tables with
string keys such as the library call numbers in Figure 15.18 confirm that
TSTs, although slightly more expensive to construct, provide the fastest
search for search misses with string keys, primarily because the search
does not require examination of all the characters in the key.

construction search misses

N B H T T* B H T T*

1250 4 4 5 5 2 2 2 1

2500 8 7 10 9 5 5 3 2

5000 19 16 21 20 10 8 6 4

12500 48 48 54 97 29 27 15 14

25000 118 99 188 156 67 59 36 30

50000 230 191 333 255 137 113 70 65

Key:
B Standard BST (Program 12.8)
H Hashing with separate chaining (M = N/5) (Program 14.3)
T TST (Program 15.12)
T* TST with R2-way branch at root (Programs 15.15 and 15.16)

been considering. For example, Program 15.13 gives a program that
allows particular characters in the search key to be unspecified, and
prints all keys in the data structure that match the specified digits of
the search key. An example is depicted in Figure 15.19. Obviously,
with a slight modification, we can adapt this program to visit all the
matching keys in the way that we do for sort, rather than just to print
them (see Exercise 15.65).

Several other similar tasks are easy to handle with TSTs. For
example, we can visit all keys in the data structure that differ from the
search key in at most one digit position (see Exercise 15.66). Opera-
tions of this type are expensive or impossible with other symbol-table
implementations. We shall consider in Part 6 these and many other
algorithms for finding approximate matches in a string search.

672 §15.4 C H A P T E R F I F T E E N

n

i

f

o

r

s

o

w

t

h

e i
m

e

n

i

f

o

r

s

o

w

t

h

e i
m

e

Figure 15.19
TST-based partial-match

search
To find all keys in a TST matching
the pattern i* (top), we search for
i in the BST for the first character.
In this example, we find is (the
only word that matches the pat-
tern) after two one-way branches.
For a less restrictive pattern such as
o (bottom), we visit all nodes in
the BST for the first character, but
only those corresponding to o for
the second character, eventually
finding for and now.

Program 15.13 Partial-match searching in TSTs

With judicious use of multiple recursive calls, we can find close matches
in the TST structure of Program 15.12, as shown in this program for
printing all strings in the data structure that match a search string with
some characters unspecified (indicated by asterisks).

private char[] w;

private void matchR(Node h, char[] s, int i)

{

if (h == null) return;

if (i == s.length && h.c == END)

System.out.println(w);

if (i == s.length) return;

if ((s[i] == ’*’) || (s[i] == h.c))

{ w[i] = h.c; matchR(h.m, s, i+1); }

if ((s[i] == ’*’) || (s[i] < h.c))
matchR(h.l, s, i);

if ((s[i] == ’*’) || (s[i] > h.c))

matchR(h.r, s, i);

}

void match(String s)

{ w = new char[s.length()];

matchR(head, s.toCharArray(), 0); }

Patricia offers several of the same advantages; the main practical
advantage of TSTs over patricia tries is that the former access key bytes
or characters rather than key bits. One reason that this difference
represents an advantage is that machine operations for this purpose
are found in many machines, and Java provides direct access to bytes
and characters through arrays or charAt in strings. Another reason
is that, in some applications, working with bytes or characters in the
data structure naturally reflects the orientation of the data itself—for
example, in the partial-match search problem discussed in the previous
paragraph (although, as we shall see in Part 6, we can also speed up
partial-match search with judicious use of bit access).

To eliminate one-way branching in TSTs, we note that most of the
one-way branching occurs at the tail ends of keys, which is not a factor
if we evolve to a symbol table implementation where we keep records in

R A D I X S E A R C H §15.4 673

Program 15.14 Hybrid TST symbol-table implementation

This class is a TST-based implementation of our standard symbol-table
ADT. It uses R-way branching at the root node: the root is an array
heads ofR links, indexed by the first digits of the keys. Each link points
to a TST built from all the keys that begin with the corresponding digits.
This hybrid combines the benefits of tries (fast search through indexing,
at the root) and TSTs (efficient use of space with one node per character,
except at the root).

class ST

{

private class Node

{ int d; ITEM item; Node l, m, r;
Node(ITEM x) { item = x; d = END; }

Node(int k) { d = k; }

Node(Node h, int k) { d = k; m = h; }

boolean internal() { return d != END; }

}

private Node[] heads;

ST(int maxN)

{ heads = new Node[R]; }

void insert(ITEM x)

// See Program 15.15

ITEM search(KEY v)

// See Program 15.16

leaves that are placed in the highest level of the tree that distinguishes
the keys. We also could maintain a byte index in the same manner
as in patricia tries (see Exercise 15.72), but will omit this change,
for simplicity. The combination of multiway branching and the TST
representation by themselves is quite effective in many applications,
but patricia-style collapse of one-way branching will further enhance
performance when the keys are such that they are likely to match for
long stretches (see Exercise 15.79).

Another easy improvement to TST-based search is to use a large
explicit multiway node at the root. The simplest way to proceed is to
keep a table of R TSTs: one for each possible value of the first letter
in the keys. If R is not large, we might use the first two letters of

674 §15.4 C H A P T E R F I F T E E N

Program 15.15 Hybrid TST insertion for symbol-table ADT

This implementation of insert using TSTs keeps items in leaves, gener-
alizing Program 15.4. We use R-way branching for the first character
and a separate TST for all words beginning with each character. If the
search ends at a null link, we create a leaf to hold the item. If the search
ends in a leaf, we create the internal nodes needed to distinguish the key
found from the search key.

private Node split(Node p, Node q, int d)

{ int pd = digit(p.item.key(), d),
qd = digit(q.item.key(), d);

Node t = new Node(qd);

if (pd < qd) { t.m = q; t.l = new Node(p, pd); }

if (pd == qd) { t.m = split(p, q, d+1); }

if (pd > qd) { t.m = q; t.r = new Node(p, pd); }

return t;

}

private Node insertR(Node h, ITEM x, int d)

{ int i = digit(x.key(), d);

if (h == null)

return new Node(new Node(x), i);

if (!h.internal())

return split(new Node(x), h, d);

if (i < h.d) h.l = insertR(h.l, x, d);
if (i == h.d) h.m = insertR(h.m, x, d+1);

if (i > h.d) h.r = insertR(h.r, x, d);

return h;

}

void insert(ITEM x)

{ int i = digit(x.key(), 0);

heads[i] = insertR(heads[i], x, 1); }

the keys (and a table of size R2). For this method to be effective, the
leading digits of the keys must be well-distributed. The resulting hybrid
search algorithm corresponds to the way that a human might search for
names in a telephone book. The first step is a multiway decision (“Let’s
see, it starts with ‘A’ ”), followed perhaps by some two-way decisions
(“It’s before ‘Andrews,’ but after ‘Aitken”’) followed by sequential

R A D I X S E A R C H §15.4 675

Program 15.16 Hybrid TST search for symbol-table ADT

This search implementation for TSTs (built with Program 15.15) is like
multiway-trie search, but we use only three, rather than R, links per
node (except at the root). We use the digits of the key to travel down
the tree, ending either at a null link (search miss) or at a leaf that has a
key that either is (search hit) or is not (search miss) equal to the search
key.

private ITEM searchR(Node h, KEY v, int d)

{
if (h == null) return null;

if (h.internal())

{ int i = digit(v, d);

if (i < h.d) return searchR(h.l, v, d);

if (i == h.d) return searchR(h.m, v, d+1);

if (i > h.d) return searchR(h.r, v, d);

}

if (equals(v, h.item.key())) return h.item;

return null;

}

ITEM search(KEY v)

{ return searchR(heads[digit(v, 0)], v, 1); }

character matching (“ ‘Algonquin,’ . . .No, ‘Algorithms’ isn’t listed,
because nothing starts with ‘Algor’!”).

Programs 15.14 through 15.16 comprise a TST-based implemen-
tation of the symbol-table search and insert operations that usesR-way
branching at the root and that keeps items in leaves (so there is no one-
way branching once the keys are distinguished). These programs are
likely to be among the fastest available for searching with string or
long radix keys. The underlying TST structure can also support a host
of other operations.

In a symbol table that grows to be huge, we may want to adapt
the branching factor to the table size. In Chapter 16, we shall see a
systematic way to grow a multiway trie so that we can take advantage
of multiway radix search for arbitrary file sizes.

Property 15.8 A search or insertion in a TST with items in leaves
(no one-way branching at the bottom) and Rt-way branching at the

676 §15.4 C H A P T E R F I F T E E N

root requires roughly lnN − t lnR byte accesses for N keys that are
random bytestrings. The number of links required is Rt (for the root
node) plus a small constant times N .

These rough estimates follow immediately from Property 15.6. For the
time cost, we assume that all but a constant number of the nodes on
the search path (a few at the top) act as random BSTs on R character
values, so we simply multiply the time cost by lnR. For the space
cost, we assume that the nodes on the first few levels are filled with R
character values, and that the nodes on the bottom levels have only a
constant number of character values.

For example, if we have 1 billion random bytestring keys with
R = 256, and we use a table of size R2 = 65536 at the top, then a
typical search will require about ln 109 − 2 ln 256 ≈ 20.7− 11.1 = 9.6
byte comparisons. Using the table at the top cuts the search cost by
a factor of 2. If we have truly random keys, we can achieve this
performance with more direct algorithms that use the leading bytes in
the key and an existence table, in the manner discussed in Section 14.6.
With TSTs, we can get the same kind of performance when keys have
a less random structure.

It is instructive to compare TSTs without multiway branching
at the root with standard BSTs, for random keys. Property 15.8 says
that TST search will require about lnN byte comparisons, whereas
standard BSTs require about lnN key comparisons. At the top of
the BST, the key comparisons can be accomplished with just one byte
comparison, but at the bottom of the tree multiple byte comparisons
may be needed to accomplish a key comparison. This performance
difference is not dramatic. The reasons that TSTs are preferable to
standard BSTs for string keys are that they provide a fast search miss;
they adapt directly to multiway branching at the root; and (most im-
portant) they adapt well to bytestring keys that are not random, so no
search takes longer than the length of a key in a TST.

Some applications may not benefit from the R-way branching at
the root—for example, the keys in the library-call-number example of
Figure 15.18 all begin with either L or W. Other applications may call
for a higher branching factor at the root—for example, as just noted,
if the keys were random integers, we would use as large a table as
we could afford. We can use application-specific dependencies of this

R A D I X S E A R C H §15.4 677

sort to tune the algorithm to peak performance, but we should not
lose sight of the fact that one of the most attractive features of TSTs is
that TSTs free us from having to worry about such application-specific
dependencies, providing good performance without any tuning.

Perhaps the most important property of tries or TSTs with
records in leaves is that their performance characteristics are inde-
pendent of the key length. Thus, we can use them for arbitrarily long
keys. In Section 15.5, we examine a particularly effective application
of this kind.

Exercises

.15.53 Write a digit method that corresponds to Program 15.9 for keys that
are of type int.

.15.54 Draw the existence trie that results when you insert the words now is
the time for all good people to come the aid of their party into
an initially empty trie. Use 27-way branching.

.15.55 Draw the existence TST that results when you insert the words now is
the time for all good people to come the aid of their party into
an initially empty TST.

.15.56 Draw the 4-way trie that results when you insert items with the keys
01010011 00000111 00100001 01010001 11101100 00100001 10010101 0100-
1010 into an initially empty trie, using 2-bit bytes.

.15.57 Draw the TST that results when you insert items with the keys 0101-
0011 00000111 00100001 01010001 11101100 00100001 10010101 01001010
into an initially empty TST, using 2-bit bytes.

.15.58 Draw the TST that results when you insert items with the keys 0101-
0011 00000111 00100001 01010001 11101100 00100001 10010101 01001010
into an initially empty TST, using 4-bit bytes.

◦15.59 Draw the TST that results when you insert items with the library-call-
number keys in Figure 15.18 into an initially empty TST.

◦15.60 Modify our multiway-trie search and insertion implementation (Pro-
gram 15.11) to work under the assumption that keys are (fixed-length)w-byte
words (so no end-of-key indication is necessary).

◦15.61 Modify our TST search and insertion implementation (Program 15.12)
to work under the assumption that keys are (fixed-length) w-byte words (so
no end-of-key indication is necessary).

15.62 Develop a TST-based implementation of Program 15.10, by modifying
Program 15.12 to use parameters of type KEY for search and insert and
using digit instead of array indexing to access characters.

678 §15.4 C H A P T E R F I F T E E N

15.63 Modify Program 15.11 to implement an existence table for String
keys (like Program 15.12), by using parameters of type String for search
and insert and using array indexing instead of digit to access characters.
Assume that the strings are ASCII, so that you can use byte arrays instead of
character arrays.

15.64 Run empirical studies to compare the time and space requirements of
an 8-way trie built with random integers using 3-bit bytes, a 4-way trie built
with random integers using 2-bit bytes, and a binary trie built from the same
keys, for N = 103, 104, 105, and 106 (see Exercise 15.14).

15.65 Modify Program 15.13 such that it invokes a method in an object
passed as a parameter with each matching string as a parameter (instead of
just printing it).

◦15.66 Write a method that prints all the keys in a TST that differ from the
search key in at most k positions, for a given integer k.

• 15.67 Give a full characterization of the worst-case internal path length of an
R-way trie with N distinct w-bit keys.

• 15.68 Develop a symbol-table implementation using multiway tries that in-
cludes a clone implementation and supports the construct, count, search,
insert, remove, and join operations for a symbol-table ADT, with support for
client handles (see Exercises 12.6 and 12.7).

• 15.69 Develop a symbol-table implementation using TSTs that includes a
clone implementation and supports the construct, count, search, insert, re-
move, and join operations for a symbol-table ADT, with support for client
handles (see Exercises 12.6 and 12.7).

.15.70 Write a program that prints out all keys in an R-way trie that have the
same initial t bytes as a given search key.

• 15.71 Modify our multiway-trie search and insertion implementation (Pro-
gram 15.11) to eliminate one-way branching in the way that we did for
patricia tries.

• 15.72 Modify our TST search and insertion implementation (Program 15.12)
to eliminate one-way branching in the way that we did for patricia tries.

15.73 Write a program to balance the BSTs that represent the internal nodes
of a TST (rearrange them such that all their external nodes are on one of two
levels).

15.74 Write a version of insert for TSTs that maintains a balanced-tree repre-
sentation of all the internal nodes (see Exercise 15.73).

• 15.75 Give a full characterization of the worst-case internal path length of a
TST with N distinct w-bit keys.

15.76 Write an implementation of radixKey for 80-byte ASCII string keys
(see Exercise 10.19). Then write a client that uses Program 15.11 to build

R A D I X S E A R C H §15.5 679

a 256-way trie with N random keys, for N = 103, 104, 105, and 106, using
search, then insert on search miss. Instrument your code to print out the
total number of nodes in each trie, the total amount of space used by each
trie, and the total amount of time taken to build each trie. Compare these
statistics with the corresponding statistics for a client that uses String keys
(see Exercise 15.63).

15.77 Answer Exercise 15.76 for TSTs. Compare your performance results
with those for tries (see Program 15.12 and Exercise 15.62).

15.78 Write an implementation of radixKey that generates random keys by
shuffling a random 80-byte sequence of ASCII characters (see Exercise 10.21).
Use this key generator to build a 256-way trie with N random keys, for
N = 103, 104, 105, and 106, using search, then insert on search miss. Compare
your performance results with those for the random case (see Exercise 15.76).

◦15.79 Write an implementation of radixKey that generates 30-byte random
strings made up of three fields: a 4-byte field with one of a set of 10 given
ASCII strings; a 10-byte field with one of a set of 50 given ASCII strings; a
1-byte field with one of two given values; and a 15-byte field with random left-
justified ASCII strings of letters equally likely to be four through 15 characters
long (see Exercise 10.23). Use this key generator to build a 256-way trie with
N random keys, for N = 103, 104, 105, and 106, using search, then insert on
search miss. Instrument your program to print out the total number of nodes
in each trie and the total amount of time taken to build each trie. Compare
your performance results with those for the random case (see Exercise 15.76).

15.80 Answer Exercise 15.79 for TSTs. Compare your performance results
with those for tries.

15.81 Develop an implementation of search and insert for bytestring keys
using multiway digital search trees.

.15.82 Draw the 27-way DST (see Exercise 15.81) that results when you insert
items with the keys now is the time for all good people to come the
aid of their party into an initially empty DST.

• 15.83 Develop an implementation of multiway-trie search and insertion using
linked lists to represent the trie nodes (as opposed to the BST representation
that we use for TSTs). Run empirical studies to determine whether it is more
efficient to use ordered or unordered lists, and to compare your implementation
with a TST-based implementation.

15.5 Text-String–Index Algorithms

In Section 12.7, we considered the process of building a string index,
and we used binary search in a table of indexes into a text string to
provide the capability to determine whether or not a given key string

680 §15.5 C H A P T E R F I F T E E N

call

ago

abou

a li

and

me i

ishm

how

havi in m

i th

i wo

inte

long

litt me o

some

neve

mind

mone

my p

prec

or n

no m

noth

part

purs

shor

sail

year

to i

thou woul

ago call

havi how in m ishm long

me i
mind mone

my p neve no m
or n

prec purs
some year

c

a

ago

call m

i

h

o

a

havi

how

s

n

in m

ishm

l

long

e

me i i

mind o

mone y

my p

s

n

e

neve o

no m

p

o

or n

r

prec u

purs

some y

year

Figure 15.20
Text-string index examples
These diagrams show text-string
indexes built from the text call
me ishmael some years ago
never mind how long precisely
... using a BST (top), a patricia
trie (center), and a TST (bottom).
Nodes with string pointers are de-
picted with the first four charac-
ters at the point referenced by the
pointer.

appears in the text. In this section, we look at more sophisticated
implementations of this ADT using multiway tries.

As in Section 12.5, we consider each position in the text to be the
beginning of a string key that runs all the way to the end of the text
and build a symbol table with these keys, using indexes into the text.
The keys are all different (for example, they are of different lengths),
and most of them are extremely long. The purpose of a search is to
determine whether or not a given search key is a prefix of one of the
keys in the index, which is equivalent to discovering whether the search
key appears somewhere in the text string.

A search tree that is built from keys defined by indexes into a text
string is called a suffix tree. We could use any algorithm that can admit
variable-length keys. Trie-based methods are particularly suitable,
because (except for the trie methods that do one-way branching at the
tails of keys) their running time does not depend on the key length, but
rather depends on only the number of digits required to distinguish

R A D I X S E A R C H §15.5 681

among the keys. This characteristic lies in direct contrast to, for
example, hashing algorithms, which do not apply immediately to this
problem because their running time is proportional to the key length.

Figure 15.20 gives examples of string indexes built with BSTs,
patricia, and TSTs (with leaves). These indexes use just the keys
starting at word boundaries; an index starting at character boundaries
would provide a more complete index, but would use significantly
more space.

Strictly speaking, even a random string text does not give rise to a
random set of keys in the corresponding index (because the keys are not
independent). However, we rarely work with random texts in practical
indexing applications, and this analytic discrepancy will not stop us
from taking advantage of the fast indexing implementations that are
possible with radix methods. We refrain from discussing the detailed
performance characteristics when we use each of the algorithms to
build a string index, because many of the same tradeoffs that we have
discussed for general symbol tables with string keys also hold for the
string-index problem.

For a typical text, standard BSTs would be the first implemen-
tation that we might choose, because they are simple to implement
(see Exercise 12.??). For typical applications, this solution is likely to
provide good performance. One byproduct of the interdependence of
the keys—particularly when we are building a string index for each
character position—is that the worst case for BSTs is not a particular
concern for huge texts, since unbalanced BSTs occur with only bizarre
constructions.

Patricia was originally designed for the string-index application.
To use Programs 15.7 and 15.6, we need only to provide an imple-
mentation of bit that, given a string pointer and an integer i, returns
the ith bit of the string (see Exercise 15.89). In practice, the height of
a patricia trie that implements a text string index will be logarithmic.
Moreover, a patricia trie will provide fast search implementations for
misses because we do not need to examine all the bytes of the key.

TSTs afford several of the performance advantages of patricia,
are simple to implement, and take advantage of built-in byte-access
operations that are typically found on modern machines. They also
are amenable to simple implementations, such as Program 15.13, that
can solve search problems more complicated than fully matching a

682 §15.5 C H A P T E R F I F T E E N

search key. To use TSTs to build a string index, we need to remove
the code that handles ends of keys in the data structure, since we are
guaranteed that no string is a prefix of another, and thus we never
will be comparing strings to their ends. This modification includes
changing the definition of equals to regard two strings as equal if one
is a prefix of the other, as we did in Section 12.5, since we will be
comparing a (short) search key against a (long) text string, starting at
some position in the text string. A third change that is convenient is
to keep a string index in each node, rather than a character, so that
every node in the tree refers to a position in the text string (the position
in the text string following the first occurrence of the character string
defined by the characters on equal branches from the root to that node).
Implementing these changes is an interesting and informative exercise
that leads to a flexible and efficient text-string–index implementation
(see Exercise 15.88).

Despite all the advantages that we have been discussing, it is im-
portant to remember that the text itself is usually fixed for typical text
indexing applications, so we do not need to support the dynamic in-
sert operations that we have become accustomed to supporting. That
is, we typically build the index once, then use it for a huge number
of searches, without ever changing it. Therefore, we may not need
dynamic data structures like BSTs, patricia tries or TSTs at all: the
basic binary search algorithm in Section 12.5 is sufficient. The pri-
mary advantage of using binary search over a dynamic data structure
is the space savings. To index a text string at N positions using binary
search, we need just N string indexes; in contrast, to index a string at
N positions using a tree-based method, we need at least 2N references
(for at least two links per node) in addition to the N indexes. Text
indexes are typically huge, so binary search might be preferred because
it provides guaranteed logarithmic search time but uses less than one-
third the amount of memory used by tree-based methods. If sufficient
memory space is available, however, TSTs or tries will lead to a faster
search for many applications because they move through the key with-
out retracing its steps, and binary search does not do so (though it
is possible to improve binary search to examine fewer characters in
string keys, as we will see in Part 6).

If we have a huge text but plan to perform only a small number
of searches, then building a full index is not likely to be justified. The

R A D I X S E A R C H §15.5 683

string-search problem is to determine quickly whether a given text
contains a given search key (without preprocessing the text). There
are numerous string-processing problems that fall between these two
extremes of needing no preprocessing and requiring a full index. Part 6
is devoted to such problems.

Exercises
.15.84 Draw the 26-way DST that results when you build a text-string in-

dex from the words now is the time for all good people to come the
aid of their party.

.15.85 Draw the 26-way trie that results when you build a text-string in-
dex from the words now is the time for all good people to come the
aid of their party.

.15.86 Draw the TST that results when you build a text-string index from
the words now is the time for all good people to come the aid of
their party, in the style of Figure 15.20.

.15.87 Draw the TST that results when you build a text-string index from
the words now is the time for all good people to come the aid of
their party, using the implementation described in the text, where the TST
contains string pointers at every node.

◦15.88 Modify the TST search and insertion implementations in Programs 15.15
and 15.16 to provide a TST-based string index.

◦15.89 Implement an interface that allows patricia to process String keys as
though they were bitstrings.

◦15.90 Draw the patricia trie that results when you build a text string in-
dex from the words now is the time for all good people to come the
aid of their party, using a 5-bit binary coding with the ith letter in the
alphabet represented by the binary representation of i.

15.91 Find a large (at least 106 bytes) text file on your system, and compare
the height and internal path length of a standard BST, patricia trie, and TST,
when you use these methods to build an index from that file.

15.92 Run empirical studies to compare the height and internal path length
of a standard BST, patricia trie, and TST, when you use these methods to
build an index from a text string consisting of N random characters from a
32-character alphabet, for N = 103, 104, 105, and 106.

◦15.93 Write an efficient program to determine the longest repeated sequence
in a huge text string.

◦15.94 Write an efficient program to determine the 10-character sequence that
occurs most frequently in a huge text string.

• 15.95 Build a string index that supports an operation that returns the number
of occurrences of its argument in the indexed text, and supports a search

684 §15.5 C H A P T E R F I F T E E N

operation that calls a method in a client-supplied object for all the text positions
that match the search key.

◦15.96 Describe a text string of N characters for which a TST-based string
index will perform particularly badly. Estimate the cost of building an index
for the same string with a BST.

15.97 Suppose that we want to build an index for a random N-bit string, for
bit positions that are a multiple of 16. Run empirical studies to determine
which of the bytesizes 1, 2, 4, 8, or 16 leads to the lowest running times to
construct a TST-based index, for N = 103, 104, 105, and 106.

