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Radix Sorting

FOR MANY SORTING applications, the keys used to define the
order of the records for files can be complicated. For example,

consider the complex nature of the keys used in a telephone book or
a library catalog. To separate this complication from essential proper-
ties of the sorting methods that we have been studying, we have used
just the basic operations of comparing two keys and exchanging two
records (hiding all the details of manipulating keys in these methods)
as the abstract interface between sorting methods and applications for
most of the methods in Chapters 6 through 9. In this chapter, we
examine a different abstraction for sort keys. For example, processing
the full key at every step is often unnecessary: to look up a person’s
number in a telephone book, we often just check the first few letters
in the name to find the page containing the number. To gain simi-
lar efficiencies in sorting algorithms, we shall shift from the abstract
operation where we compare keys to an abstraction where we decom-
pose keys into a sequence of fixed-sized pieces. Binary numbers are
sequences of bits, strings are sequences of characters, decimal num-
bers are sequences of digits, and many other (but not all) types of keys
can be viewed in this way. Sorting methods built on processing keys
one piece at a time are called radix sorts. These methods do not just
compare keys: They process and compare pieces of keys.

In radix-sorting algorithms, the pieces of the keys are of fixed
size, so there is a fixed number of different values each piece could
have. Indeed, it is usually the case that the R different possible values
for each piece are the integers 0, 1, . . .,R−1. Radix-sorting algorithms
treat the keys as numbers represented in a base-R number system, for
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various values of R (the radix), and work with individual digits of the
numbers.

For example, when a machine at the post office processes a pile of
packages that have on them five-digit decimal numbers, it distributes
the packages into ten piles: one having numbers beginning with 0, one
having numbers beginning with 1, one having numbers beginning with
2, and so forth. If necessary, the piles can be processed individually,
by using the same method on the next digit or by using some easier
method if there are only a few packages. If we were to pick up the
packages in the piles in order from 0 to 9 and in order within each
pile after they have been processed, we would get them in sorted order.
This procedure is a simple example of a radix sort withR = 10, and it
is the method of choice in many real sorting applications where keys
are 5- to 10-digit decimal numbers, such as postal codes, telephone
numbers or social-security numbers. We shall examine the method in
detail in Section 10.3.

Different values of the radix R are appropriate in various appli-
cations. In this chapter, we focus primarily on keys that are integers
(in Java, data of one of the primitive types byte, char, short, int, or
long) or strings (in Java, String objects), where radix sorts are widely
used. For integers, because they are represented as binary numbers in
computers, we most often work with R = 2 or some power of 2, be-
cause this choice allows us to decompose keys into independent pieces.
For keys that involve strings of characters, we use R = 28 or R = 216,
aligning the radix with the byte size. Beyond such direct applications,
we can ultimately treat virtually anything that is represented inside a
digital computer as a binary number, and we can recast many sorting
applications using other types of keys to make feasible the use of radix
sorts operating on keys that are binary numbers.

Radix-sorting algorithms are based on the abstract operation
“extract the ith digit from a key.” Fortunately, Java provides low-level
operators that make it possible to implement such an operation in a
straightforward and efficient manner. This fact is significant because
some languages in the past (for example, Pascal), to encourage us to
write machine-independent programs, intentionally made it difficult to
write a program that depends on the way that a particular machine
represents numbers. In such languages, it was difficult to implement
many types of bit-by-bit manipulation techniques that actually suit
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Figure 10.1
MSD radix sorting

.396465048 .015583409 .0

.353336658 .159072306 .1590

.318693642 .159369371 .1593

.015583409 .269971047 .2

.159369371 .318693642 .31

.691004885 .353336658 .35

.899854354 .396465048 .39

.159072306 .538069659 .5

.604144269 .604144269 .60

.269971047 .691004885 .69

.538069659 .899854354 .8

Even though the 11 numbers be-
tween 0 and 1 on this list (left)
each have nine digits for a total
of 99 digits, we can put them in
order (center) by just examining 22
of the digits (right).

most computers well. Radix sorting in particular was, for a time, a
casualty of this “progressive” philosophy. But the designers of C, C++,
and Java recognized that direct manipulation of bits is often useful,
and we shall be able to take advantage of low-level language facilities
to implement radix sorts.

Good hardware support also is required; and it cannot be taken
for granted. Some machines (both old and new) provide efficient ways
to get at small data, but some other machines (both old and new) slow
down significantly when such operations are used. Whereas radix
sorts are simply expressed in terms of the extract-the-digit operation,
the task of getting peak performance out of a radix sorting algorithm
can be a fascinating introduction to our hardware and software envi-
ronment.

There are two, fundamentally different, basic approaches to
radix sorting. The first class of methods involves algorithms that
examine the digits in the keys in a left-to-right order, working with
the most significant digits first. These methods are generally referred
to as most-significant-digit (MSD) radix sorts. MSD radix sorts are
attractive because they examine the minimum amount of information
necessary to get a sorting job done (see Figure 10.1). MSD radix sorts
generalize quicksort, because they work by partitioning the file to be
sorted according to the leading digits of the keys, then recursively ap-
plying the same method to the subfiles. Indeed, when the radix is 2, we
implement MSD radix sorting in a manner similar to that for quick-
sort. The second class of radix-sorting methods is different: They
examine the digits in the keys in a right-to-left order, working with
the least significant digits first. These methods are generally referred
to as least-significant-digit (LSD) radix sorts. LSD radix sorts are
somewhat counterintuitive, since they spend processing time on digits
that cannot affect the result, but it is easy to ameliorate this problem,
and this venerable approach is the method of choice for many sorting
applications.

10.1 Bits, Bytes, and Words

The key to understanding radix sorts is to recognize that (i) computers
generally are built to process bits in groups called machine words,
which are often grouped into smaller pieces call bytes; (ii) sort keys
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also are commonly organized as byte sequences; and (iii) byte values
can also serve as array indices or machine addresses. Therefore, it will
be convenient for us to work with the following abstractions.

Definition 10.1 A byte is a fixed-length sequence of bits; a string is
a variable-length sequence of bytes; a word is a fixed-length sequence
of bytes.

In radix sorting, depending on the context, a key may be a word or
a string. Some of the radix-sorting algorithms that we consider in
this chapter depend on the keys being fixed length (words); others are
designed to adapt to the situation when the keys are variable length
(strings).

A typical machine might have 8- or 16-bit bytes and 32- or 64-bit
words, and Java has built-in primitive data types whose numbers of
bits are explicitly specified, but we use the terms byte, string, and word
in a generic sense in this chapter, because it will be convenient for us
to consider various other byte and word sizes as well (generally small
integer multiples or fractions of built-in machine sizes).

Thus, we use machine- and application-dependent defined con-
stants for the number of bits per word and the number of bits per byte,
for example:

static final int bitsword = 32;

static final int bitsbyte = 8;

static final int bytesword = bitsword/bitsbyte;

static final int R = 1 << bitsbyte;

Also included in these definitions for use when we begin looking at
radix sorts is the constant R, the number of different byte values.
When using these definitions, we generally assume that bitsword is
a multiple of bitsbyte; that the number of bits per machine word
is not less than (typically, is equal to) bitsword; and that bytes are
individually addressable.

Different computers have different conventions for referring to
their bits and bytes; for the purposes of our discussion, we will consider
the bits in a word to be numbered, left to right, from 0 to bitsword-1,
and the bytes in a word to be numbered, left to right, from 0 to
bytesword-1. In both cases, we assume the numbering to also be
from most significant to least significant.
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Most computers have bitwise and and shift operations, which we
can use to extract bytes from words. In Java, we can directly express
the operation of extracting the Bth byte of a binary key key as follows:

int digit(int B)
{ return (key >> bitsbyte*(bytesword-B-1)) & (R-1); }

For example, this method would extract byte 2 (the third byte) of a
32-bit number by shifting right 32− 3 ∗ 8 = 8 bit positions, then using
the mask 00000000000000000000000011111111 to zero out all the
bits except those of the desired byte, in the 8 bits at the right.

Another option is to arrange things such that the radix is aligned
with the byte size, and therefore a single access will get the right bits
quickly. This operation is supported directly for String objects in
Java: We take R to be 216 (since String objects are sequences of 16-
bit Unicode characters) and can access the Bth character of a String

st either with the single method invocation st.charAt(B) or (after
initially using toCharArry to convert each string to a key that is a
character array) a single array access. In Java this approach could be
used for numbers as well, because we are guaranteed that numbers will
be represented the same way in all virtual machines. We also need to be
aware that byte-access operations of this type might be implemented
with underlying shift-and-mask operations similar to the ones in the
previous paragraph in some implementations.

At a slightly different level of abstraction, we can think of keys
as numbers and bytes as digits. Given a (key represented as a) number,
the fundamental operation needed for radix sorts is to extract a digit
from the number. When we choose a radix that is a power of 2, the
digits are groups of bits, which we can easily access directly using one
of the macros just discussed. Indeed, the primary reason that we use
radices that are powers of 2 is that the operation of accessing groups
of bits is inexpensive. In some computing environments, we can use
other radices, as well. For example, if a is a positive integer, the bth
digit of the radix-R representation of a is

ba/Rbc mod R.

On a machine built for high-performance numerical calculations, this
computation might be as fast for general R as for R = 2.

Yet another viewpoint is to think of keys as numbers between 0
and 1 with an implicit decimal point at the left, as shown in Figure 10.1.
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In this case, the bth digit of a is

baRbc mod R.

If we are using a machine where we can do such operations efficiently,
then we can use them as the basis for our radix sort. This model also
applies when keys are variable length (strings).

Thus, for the remainder of this chapter, we view keys as radix-R
numbers (with R not specified), and use the abstract digit operation
to access digits of keys, with confidence that we will be able to develop
fast implementations of digit for particular computers. For clarity,
we use the name bit instead of digit when R is 2.

Definition 10.2 A key is a radix-R number, with digits numbered
from the left (starting at 0).

In light of the examples that we just considered, it is safe for us to
assume that this abstraction will admit efficient implementations for
many applications on most computers, although we must be careful
that a particular implementation is efficient within a given hardware
and software environment.

We assume that the keys are not short, so it is worthwhile to
extract their bits. If the keys are short, then we can use the key-
indexed counting method of Chapter 6. Recall that this method can
sort N keys known to be integers between 0 and R− 1 in linear time,
using one auxiliary table of size R for counts and another of size N
for rearranging records. Thus, if we can afford a table of size 2w, then
w-bit keys can easily be sorted in linear time. Indeed, key-indexed
counting lies at the heart of the basic MSD and LSD radix-sorting
methods. Radix sorting comes into play when the keys are sufficiently
long (say w = 64) that using a table of size 2w is not feasible.

Exercises

.10.1 How many digits are there when a 32-bit quantity is viewed as a radix-
256 number? Describe how to extract each of the digits. Answer the same
question for radix 216.

.10.2 For N = 103, 106, and 109, give the smallest byte size that allows any
number between 0 and N to be represented in a 4-byte word.

.10.3 Implement a class wordItem this is like the ItemADT of Section 6.2, but
which also includes the digit method described in the text (and the constants
bitsword, bitsbyte, bytesword, and R), for 64-bit keys and 8-bit bytes.
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.10.4 Implement a class wordItem this is like the Item ADT of Section 6.2,
but which also includes the bit method described in the text (and the constants
bitsword, bitsbyte, bytesword, and R), for 10-bit keys and 1-bit bytes.

◦10.5 Implement a comparison method less using the digit abstraction (so
that, for example, we could run empirical studies comparing the algorithms in
Chapters 6 and 9 with the methods in this chapter, using the same data).

◦10.6 Design and carry out an experiment to compare the cost of extracting
digits using bit-shifting and arithmetic operations on your machine. How
many digits can you extract per second, using each of the two methods? Note:
Be wary; your compiler might convert arithmetic operations to bit-shifting
ones, or vice versa!

• 10.7 Write a program that, given a set of N random decimal numbers (R =
10) uniformly distributed between 0 and 1, will compute the number of digit
comparisons necessary to sort them, in the sense illustrated in Figure 10.1.
Run your program for N = 103, 104, 105, and 106.

• 10.8 Answer Exercise 10.7 for R = 2, using random 32-bit quantities.

• 10.9 Answer Exercise 10.7 for the case where the numbers are distributed
according to a Gaussian distribution.

10.2 Binary Quicksort

Suppose that we can rearrange the records of a file such that all those
whose keys begin with a 0 bit come before all those whose keys begin
with a 1 bit. Then, we can use a recursive sorting method that is a
variant of quicksort (see Chapter 7): Partition the file in this way, then
sort the two subfiles independently. To rearrange the file, scan from
the left to find a key that starts with a 1 bit, scan from the right to find
a key that starts with a 0 bit, exchange, and continue until the scanning
pointers cross. This method is often called radix-exchange sort in the
literature (including in earlier editions of this book); here, we shall use
the name binary quicksort to emphasize that it is a simple variant of the
algorithm invented by Hoare, even though it was actually discovered
before quicksort was (see reference section).

Program 10.1 is a full implementation of this method. The parti-
tioning process is essentially the same as Program 7.2, except that the
number 2b, instead of some key from the file, is used as the partitioning
element. Because 2b may not be in the file, there can be no guarantee
that an element is put into its final place during partitioning. The al-
gorithm also differs from normal quicksort because the recursive calls
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Figure 10.2
Binary quicksort example
Partitioning on the leading bit does
not guarantee that one value will
be put into place; it guarantees
only that all keys with leading
0 bits come before all keys with
leading 1 bits. We can compare
this diagram with Figure 7.1 for
quicksort, although the operation
of the partitioning method is com-
pletely opaque without the binary
representation of the keys. Fig-
ure 10.3 gives the details that ex-
plain the partition positions pre-
cisely.

Program 10.1 Binary quicksort

This program sorts objects of type bitsItem, a class which allows access
to the bits of the keys (see Exercise 10.4). It is a recursive method that
partitions a file on the leading bits of the keys, and then sorts the subfiles
recursively. The variable d keeps track of the bit being examined, starting
at 0 (leftmost). The partitioning stops with j equal to i, and all elements
to the right of a[i] having 1 bits in the dth position and all elements
to the left of a[i] having 0 bits in the dth position. The element a[i]
itself will have a 1 bit unless all keys in the file have a 0 in position d.
An extra test just after the partitioning loop covers this case.

static void

quicksortB(bitsItem[] a, int l, int r, int d)

{ int i = l, j = r;

if (r <= l || d > bitsItem.bitsword) return;

while (j != i)

{

while (a[i].bit(d) == 0 && (i < j)) i++;

while (a[j].bit(d) == 1 && (j > i)) j--;

exch(a, i, j);

}

if (a[r].bit(d) == 0) j++;

quicksortB(a, l, j-1, d+1);

quicksortB(a, j, r, d+1);
}

are for keys with 1 fewer bit. This difference has important impli-
cations for performance. For example, when a degenerate partition
occurs for a file of N elements, a recursive call for a subfile of size N
will result, for keys with 1 fewer bit. Thus, the number of such calls
is limited by the number of bits in the keys. By contrast, consistent
use of partitioning values not in the file in a standard quicksort could
result in an infinite recursive loop.

As there are with standard quicksort, various options are avail-
able in implementing the inner loop. In Program 10.1, tests for whether
the pointers have crossed are included in both inner loops. This ar-
rangement results in an extra exchange for the case i = j, which could
be avoided with a break, as is done in Program 7.2, although in this
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Binary quicksort example (key

bits exposed)
We derive this figure from Fig-
ure 10.2 by translating the keys to
their binary encoding, compressing
the table such that the independent
subfile sorts are shown as though
they happen in parallel, and trans-
posing rows and columns. The first
stage splits the file into a subfile
with all keys beginning with 0, and
a subfile with all keys beginning
with 1. Then, the first subfile is
split into one subfile with all keys
beginning with 00, and another
with all keys beginning with 01;
independently, at some other time,
the other subfile is split into one
subfile with all keys beginning with
10, and another with all keys be-
ginning with 11. The process stops
when the bits are exhausted (for
duplicate keys, in this example) or
the subfiles are of size 1.

case the exchange of a[i] with itself is harmless. Another alternative
is to use sentinel keys.

Figure 10.2 depicts the operation of Program 10.1 on a small
sample file, for comparison with Figure 7.1 for quicksort. This figure
shows what the data movement is, but not why the various moves
are made—that depends on the binary representation of the keys. A
more detailed view for the same example is given in Figure 10.3. This
example assumes that the letters are encoded with a simple 5-bit code,
with the ith letter of the alphabet represented by the binary represen-
tation of the number i. This encoding is a simplified version of real
character codes, which use more bits (7, 8, or even 16) to represent
more characters (uppercase or lowercase letters, numbers, and special
symbols).

For full-word keys consisting of random bits, the starting point
in Program 10.1 should be the leftmost bit of the words, or bit 0. In
general, the starting point that should be used depends in a straight-
forward way on the application, on the number of bits per word in the
machine, and on the machine representation of integers and negative
numbers. For the one-letter 5-bit keys in Figures 10.2 and 10.3, the
starting point on a 32-bit machine would be bit 27.

This example highlights a potential problem with binary quick-
sort in practical situations: Degenerate partitions (partitions with all
keys having the same value for the bit being used) can happen fre-
quently. It is not uncommon to sort small numbers (with many leading
zeros) as in our examples. The problem also occurs in keys comprising
characters: for example, suppose that we make up 64-bit keys from
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Figure 10.4
Binary quicksort partitioning

trie
This tree describes the partition-
ing structure for binary quicksort,
corresponding to Figures 10.2
and 10.3. Because no item is nec-
essarily put into position, the keys
correspond to external nodes in the
tree. The structure has the follow-
ing property: Following the path
from the root to any key, taking
0 for left branches and 1 for right
branches, gives the leading bits of
the key. These are precisely the
bits that distinguish the key from
other keys during the sort. The
small black squares represent the
null partitions (when all the keys
go to the other side because their
leading bits are the same). This
happens only near the bottom of
the tree in this example, but could
happen higher up in the tree: For
example, if I or X were not among
the keys, their node would be re-
placed by a null node in this draw-
ing. Note that duplicated keys (A
and E) cannot be partitioned (the
sort puts them in the same sub-
file only after all their bits are ex-
hausted).

four characters by encoding each in 16-bit Unicode and then putting
them together. Then, degenerate partitions are likely to occur at the
beginning of each character position, because, for example, lowercase
letters all begin with the same bits. This problem is typical of the
effects that we need to address when sorting encoded data, and similar
problems arise in other radix sorts.

Once a key is distinguished from all the other keys by its left bits,
no further bits are examined. This property is a distinct advantage
in some situations; it is a disadvantage in others. When the keys are
truly random bits, only about lgN bits per key are examined, and that
could be many fewer than the number of bits in the keys. This fact
is discussed in Section 10.6; see also Exercise 10.7 and Figure 10.1.
For example, sorting a file of 1000 records with random keys might
involve examining only about 10 or 11 bits from each key (even if the
keys are, say, 64-bit keys). On the other hand, all the bits of equal
keys are examined. Radix sorting simply does not work well on files
that contain huge numbers of duplicate keys that are not short. Bi-
nary quicksort and the standard method are both fast if keys to be
sorted comprise truly random bits (the difference between them is pri-
marily determined by the difference in cost between the bit-extraction
and comparison operations), but the standard quicksort algorithm can
adapt better to nonrandom sets of keys, and 3-way quicksort is ideal
when duplicate keys predominate.

As it was with quicksort, it is convenient to describe the partition-
ing structure with a binary tree (as depicted in Figure 10.4): The root
corresponds to a subfile to be sorted, and its two subtrees correspond
to the two subfiles after partitioning. In standard quicksort, we know
that at least one record is put into position by the partitioning process,
so we put that key into the root node; in binary quicksort, we know
that keys are in position only when we get to a subfile of size 1 or we
have exhausted the bits in the keys, so we put the keys at the bottom of
the tree. Such a structure is called a binary trie—properties of tries are
covered in detail in Chapter 15. For example, one important property
of interest is that the structure of the trie is completely determined by
the key values, rather than by their order.

Partitioning divisions in binary quicksort depend on the binary
representation of the range and number of items being sorted. For
example, if the files are random permutations of the integers less than
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Figure 10.5
Dynamic characteristics of bi-

nary quicksort on a large
file

Partitioning divisions in binary
quicksort are less sensitive to key
order than they are in standard
quicksort. Here, two different ran-
dom 8-bit files lead to virtually
identical partitioning profiles.

171 = 101010112, then partitioning on the first bit is equivalent to
partitioning about the value 128, so the subfiles are unequal (one of
size 128 and the other of size 43). The keys in Figure 10.5 are random
8-bit values, so this effect is absent there, but the effect is worthy of
note now, lest it come as a surprise when we encounter it in practice.

We can improve the basic recursive implementation in Pro-
gram 10.1 by removing recursion and treating small subfiles differently,
just as we did for standard quicksort in Chapter 7.

Exercises

.10.10 Draw the trie in the style of Figure 10.2 that corresponds to the parti-
tioning process in radix quicksort for the key E A S Y Q U E S T I O N.

10.11 Compare the number of exchanges used by binary quicksort with the
number used by the normal quicksort for the file of 3-bit binary numbers 001,
011, 101, 110, 000, 001, 010, 111, 110, 010.

◦10.12 Why is it not as important to sort the smaller of the two subfiles first in
binary quicksort as it was for normal quicksort?

◦10.13 Describe what happens on the second level of partitioning (when the
left subfile is partitioned and when the right subfile is partitioned) when we
use binary quicksort to sort a random permutation of the nonnegative integers
less than 171.

10.14 Write a program that, in one preprocessing pass, identifies the number
of leading bit positions where all keys are equal, then calls a binary quicksort
that is modified to ignore those bit positions. Compare the running time of
your program with that of the standard implementation forN = 103, 104, 105,
and 106 when the input is 32-bit words of the following format: The rightmost
16 bits are uniformly random, and the leftmost 16 bits are all 0 except with a
1 in position i if there are i 1s in the right half.

10.15 Modify binary quicksort to check explicitly for the case that all keys are
equal. Compare the running time of your program with that of the standard
implementation for N = 103, 104, 105, and 106 with the input described in
Exercise 10.14.

10.3 MSD Radix Sort

Using just 1 bit in radix quicksort amounts to treating keys as radix-
2 (binary) numbers and considering the most significant digits first.
Generalizing, suppose that we wish to sort radix-R numbers by con-
sidering the most significant bytes first. Doing so requires partitioning
the array intoR, rather than just two, different parts. Traditionally we
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Figure 10.6
Dynamic characteristics of

MSD radix sort
Just one stage of MSD radix sort
can nearly complete a sort task, as
shown in this example with ran-
dom 8-bit integers. The first stage
of an MSD sort, on the leading 2
bits (left), divides the file into four
subfiles. The next stage divides
each of those into four subfiles.
An MSD sort on the leading 3 bits
(right) divides the file into eight
subfiles, in just one distribution-
counting pass. At the next level,
each of those subfiles is divided
into eight parts, leaving just a few
elements in each.

refer to the partitions as bins or buckets and think of the algorithm as
using a group of R bins, one for each possible value of the first digit,
as indicated in the following diagram:

bin 0 bin 1 bin 2 bin M-1

keys with
first byte 0

keys with
first byte 1

keys with
first byte 2 .  .  .

keys with
first byte M-1

We pass through the keys, distributing them among the bins, then
recursively sort the bin contents on keys with 1 fewer byte.

Figure 10.6 shows an example of MSD radix sorting on a ran-
dom permutation of integers. By contrast with binary quicksort, this
algorithm can bring a file nearly into order rather quickly, even on the
first partition, if the radix is sufficiently large.

As mentioned in Section 10.2, one of the most attractive features
of radix sorting is the intuitive and direct manner in which it adapts to
sorting applications where keys are strings of characters. This obser-
vation is especially true in Java and other programming environments
that provide direct support for processing strings (String objects). For
MSD radix sorting, we simply use a radix corresponding to the byte
size. To extract a digit, we load a byte; to move to the next digit, we
increment an index into a character array. For the moment, we con-
sider fixed-length keys; we shall see shortly that variable-length string
keys are easy to handle with the same basic mechanisms.

Figure 10.7 shows an example of MSD radix sorting on three-
letter words. For simplicity, this figure assumes that the radix is 26,
although in most applications we would use a larger radix correspond-
ing to the standard Java Unicode character encodings. First, the words
are partitioned so all those that start with a appear before those that
start with b, and so forth. Then, the words that start with a are sorted
recursively, then the words that start with b are sorted, and so forth.
As is obvious from the example, most of the work in the sort lies in
partitioning on the first letter; the subfiles that result from the first
partition are small.

As we saw for quicksort in Chapter 7 and Section 10.2 and for
mergesort in Chapter 8, we can improve the performance of most
recursive programs by using a simple algorithm for small cases. Using
a different method for small subfiles (bins containing a small number
of elements) is essential for radix sorting, because there are so many of
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Figure 10.7
MSD radix sort example

now ace ace ace

for ago ago ago

tip and and and

ilk bet bet bet

dim cab cab cab

tag caw caw caw

jot cue cue cue

sob dim dim dim

nob dug dug dug

sky egg egg egg

hut for few fee

ace fee fee few

bet few for for

men gig gig gig

egg hut hut hut

few ilk ilk ilk

jay jam jay jam

owl jay jam jay

joy jot jot jot

rap joy joy joy

gig men men men

wee now now nob

was nob nob now

cab owl owl owl

wad rap rap rap

caw sob sky sky

cue sky sob sob

fee tip tag tag

tap tag tap tap

ago tap tar tar

tar tar tip tip

jam wee wad wad

dug was was was

and wad wee wee

We divide the words into 26 bins
according to the first letter. Then,
we sort all the bins by the same
method, starting at the second let-
ter.

them! Moreover, we can tune the algorithm by adjusting the value ofR
because there is a clear tradeoff: IfR is too large, the cost of initializing
and checking the bins dominates; if it is too small, the method does
not take advantage of the potential gain available by subdividing into
as many pieces as possible. We return to these issues at the end of this
section and in Section 10.6.

To implement MSD radix sort, we need to generalize the meth-
ods for partitioning an array that we studied in relation to quicksort
implementations in Chapter 7. These methods, which are based on
pointers that start from the two ends of the array and meet in the mid-
dle, work well when there are just two or three partitions, but do not
immediately generalize. Fortunately, the key-indexed counting method
from Chapter 6 for sorting files with key values in a small range suits
our needs perfectly. We use a table of counts and an auxiliary array;
on a first pass through the array, we count the number of occurrences
of each leading digit value. These counts tell us where the partitions
will fall. Then, on a second pass through the array, we use the counts
to move items to the appropriate position in the auxiliary array.

Program 10.2 implements this process. Its recursive structure
generalizes quicksort’s, so the same issues that we considered in Sec-
tion 7.3 need to be addressed. Should we do the largest of the subfiles
last to avoid excessive recursion depth? Probably not, because the
recursion depth is limited by the length of the keys. Should we sort
small subfiles with a simple method such as insertion sort? Certainly,
because there are huge numbers of them.

To do the partitioning, Program 10.2 uses an auxiliary array
of size equal to the size of the array to be sorted. Alternatively, we
could choose to use in-place key-indexed counting (see Exercises 10.19
and 10.20). We need to pay particular attention to space, because
the recursive calls might use excessive space for local variables. In
Program 10.2, the temporary buffer for moving keys (aux) can be
global, but the array that holds the counts and the partition positions
(count) must be local.

Extra space for the auxiliary array is not a major concern in
many practical applications of radix sorting that involve long keys
and records, because we normally are manipulating references to such
data. Therefore, the extra space is for rearranging references, and
is small compared to the space for the keys and records themselves
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Program 10.2 MSD radix sort

This program sorts objects of type wordItem, a class which allows access
to the bytes of the keys (see Exercise 10.3). It is a recursive method that
is derived from Program 6.20 (key-indexed-counting sort) by changing
key references to key-digit references and adding a loop at the end that
does recursive calls for each subfile of keys starting with the same digit.
This code assumes the keys to be of fixed length; it is easily adapted to
handle variable-length keys (see text).

private final static int M = 10;

static void

radixMSD(wordItem[] a, int l, int r, int d)

{ int i, j, cnt[] = new int[wordItem.R+1];
wordItem aux[] = new wordItem[a.length];

if (d > wordItem.bytesword) return;

if (r-l <= M) { insertion(a, l, r); return; }

for (j = 0; j < wordItem.R; j++) cnt[j] = 0;

for (i = l; i <= r; i++)

cnt[a[i].digit(d) + 1]++;

for (j = 1; j < wordItem.R; j++)

cnt[j] += cnt[j-1];

for (i = l; i <= r; i++)

aux[cnt[a[i].digit(d)]++] = a[i];

for (i = l; i <= r; i++) a[i] = aux[i-l];

radixMSD(a, l, l+cnt[0]-1, d+1);

for (j = 0; j < wordItem.R-1; j++)

radixMSD(a, l+cnt[j], l+cnt[j+1]-1, d+1);
}

(although still not insignificant). If space is available and speed is of
the essence (a common situation when we use radix sorts), we can also
eliminate the time required for the array copy by recursive argument
switchery, in the same manner as we did for mergesort in Section 10.4.

For random keys, the number of keys in each bin (the size of the
subfiles) after the first pass will be N/R on the average. In practice,
the keys may not be random (for example, when the keys are String

objects representing English-language words, we know that few start
with x and none start with xx, not to mention all the Unicode char-
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Figure 10.8
MSD radix sort example

(with empty bins)

no an am

if am an

be at as

do as at

he be be

an by by

by do do

of go go

us he he

on if if

am is in

we it is

is in it

at me me

it no no

to of of

or on on

me or or

go to to

in us us

as we we

Excessive numbers of empty bins
are encountered, even in the sec-
ond stage, for small files.

acters that we do not use), so many bins will be empty and some of
the nonempty ones will have many more keys than others do (see Fig-
ure 10.8). Despite this effect, the multiway partitioning process will
generally be effective in dividing a large file to be sorted into many
smaller ones.

Another natural way to implement MSD radix sorting is to use
linked lists. We keep one linked list for each bin: On a first pass
through the items to be sorted, we insert each item into the appro-
priate linked list, according to its leading digit value. Then, we sort
the sublists, and stitch together all the linked lists to make a sorted
whole. This approach presents a challenging programming exercise
(see Exercise 10.42). Stitching together the lists requires keeping track
of the beginning and the end of all the lists, and, of course, coping with
the fact that many of the lists are likely to be empty.

To achieve good performance using radix sort for a particular
application, we need to limit the number of empty bins encountered
by choosing appropriate values both for the radix size and for the
cutoff for small subfiles. As a concrete example, suppose that 224

(about sixteen million) 64-bit integers are to be sorted. To keep the
table of counts small by comparison with the file size, we might choose
a radix of R = 216, corresponding to checking 16 bits of the keys. But
after the first partition, the average file size is only 28, and a radix of
216 for such small files is overkill. To make matters worse, there can
be huge numbers of such files: about 216 of them in this case. For each
of those 216 files, the sort sets 216 counters to zero, then checks that
all but about 28 of them are nonzero, and so forth, for a cost of at
least 232 arithmetic operations. Program 10.2, which is implemented
on the assumption that most bins are nonempty, does more than a
few arithmetic operations for each empty bin (for example, it does
recursive calls for all the empty bins), so its running time would be
huge for this example. A more appropriate radix for the second level
might be 28 or 24. In short, we should be certain not to use large
radices for small files in a MSD radix sort. We shall consider this point
in detail in Section 10.6, when we look carefully at the performance
of the various methods.

It is not difficult to modify Program 10.2 to handle variable-
length keys. One particularly easy approach applies when we can use
the digit value 0 to serve to mark the end of a key (and we know
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Figure 10.9
Recursive structure of MSD

radix sort.
This tree corresponds to the oper-
ation of the recursive MSD radix
sort in Program 10.2 on the two-
letter MSD sorting example in Fig-
ure 10.8. If the file size is 1 or 0,
there are no recursive calls. Oth-
erwise, there are 26 calls: one for
each possible value of the current
byte.

that 0 can appear nowhere else in any key), as in C-style strings (see
Section 3.6). Then we can remove the test on having reached the last
byte at the beginning of Program 10.2 and just skip the recursive call
corresponding to bin 0. Another approach is to include a length()

method in wordItem, reserve bin 0 for keys with d not less than the
key length, add 1 to all the other bin numbers, and skip the recursive
call corresponding to bin 0.

To use Program 10.2 to sort Java String objects, we can use a
wordItem implementation based on implementing the digit abstract
operation as a single array access (as discussed in Section 10.1) and
adopt either of the approaches described in the previous paragraph to
handle the variable-length keys (see Exercises 10.21 and 10.22). By
adjusting R and bytesword (and testing their values), we can easily
make further modifications to handle string keys built from nonstan-
dard alphabets or in nonstandard formats involving length restrictions
or other conventions.

String sorting again illustrates the importance of managing empty
bins properly. Figure 10.8 shows the partitioning process for an ex-
ample like Figure 10.7, but with two-letter words and with the empty
bins shown explicitly. In this example, we radix sort two-letter words
using radix 26, so there are 26 bins at every stage. In the first stage,
there are not many empty bins; in the second stage, however, most
bins are empty.

An MSD radix-sorting method divides the file on the first digit of
the keys, then recursively calls itself for subfiles corresponding to each
value. Figure 10.9 shows this recursive-call structure for MSD radix
sorting for the example in Figure 10.8. The call structure corresponds
to a multiway trie, a direct generalization of the trie structure for
binary quicksort in Figure 10.4. Each node corresponds to a recursive
call on the MSD sort for some subfile. For example, the subtree of the
root with root labeled o corresponds to sorting the subfile consisting
of the three keys of, on, and or.
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These figures make obvious the presence of significant numbers of
empty bins in MSD sorting with strings. In Section 10.4, we study one
way to cope with this problem; in Chapter 15, we examine explicit
uses of trie structures in string-processing applications. Generally,
we work with compact representations of the trie structures that do
not include the nodes corresponding to the empty bins and that have
the labels moved from the edges to the nodes below, as illustrated
in Figure 10.10, the structure that corresponds to the recursive call
structure (ignoring empty bins) for the three-letter MSD radix-sorting
example of Figure 10.7. For example, the subtree of the root with root
labeled j corresponds to sorting the bin containing the four keys jam,
jay, jot, and joy. We examine properties of such tries in detail in
Chapter 15.

The main challenge in getting maximum efficiency in a practical
MSD radix sort for keys that are long strings is to deal with lack
of randomness in the data. Typically, keys may have long stretches
of equal or unnecessary data, or parts of them might fall in only a
narrow range. For example, an information-processing application
for student data records might have keys with fields corresponding to
graduation year (4 bytes, but one of four different values), state names
(perhaps 10 bytes, but one of 50 different values), and gender (1 byte
with one of two given values), as well as to a person’s name (more
similar to random strings, but probably not short, with nonuniform
letter distributions, and with trailing blanks in a fixed-length field). All
these various restrictions lead to large numbers of empty bins during
the MSD radix sort (see Exercise 10.27).

One practical way to cope with this problem is to develop a
more complex implementation of the abstract operation of accessing
bytes that takes into account any specialized knowledge that we might
have about the strings being sorted. Another method that is easy to
implement, which is called the bin-span heuristic, is to keep track of the
high and low ends of the range of nonempty bins during the counting
phase, then to use only bins in that range (perhaps also including
special cases for a few special key values, such as 0 or blank). This
arrangement is attractive for the kind of situation described in the
previous paragraph. For example, with radix-256 alphanumeric data,
we might be working with numbers in one section of the keys and
thus have only 10 nonempty bins corresponding to the digits, while
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Figure 10.10
Recursive structure of

MSD radix sort (null sub-
files ignored)

This representation of the recur-
sive structure of MSD radix sort
is more compact than the one in
Figure 10.9. Each node in this
tree is labeled with the value of
the (i − 1)st digit of certain keys,
where i is the distance from the
node to the root. Each path from
the root to the bottom of the tree
corresponds to a key; putting the
node labels together gives the key.
This tree corresponds to the three-
letter MSD sorting example in Fig-
ure 10.7.

we might be working with uppercase letters in another section of the
keys and thus have only 26 nonempty bins corresponding to them.

There are various alternatives that we might try for extending the
bin-span heuristic (see reference section). For example, we could con-
sider keeping track of the nonempty bins in an auxiliary data structure,
and only keep counters and do the recursive calls for those. Doing so
(and even the bin-span heuristic itself) is probably overkill for this situ-
ation, however, because the cost savings is negligible unless the radix is
huge or the file size is tiny, in which case we should be using a smaller
radix or sorting the file with some other method. We might achieve
some of the same cost savings that we could achieve by adjusting the
radix or switching to a different method for small files by using an ad
hoc method, but we could not do so as easily. In Section 10.4, we
shall consider yet another version of quicksort that does handle the
empty-bin problem gracefully.

Exercises

.10.16 Draw the compact trie strucure (with no empty bins and with keys in
nodes, as in Figure 10.10) corresponding to Figure 10.9.

.10.17 How many nodes are there in the full trie corresponding to Fig-
ure 10.10?

.10.18 Show how the set of keys now is the time for all good people
to come the aid of their party is partitioned with MSD radix sort.

• 10.19 Write a program that does four-way partitioning in place, by counting
the frequency of occurrence of each key as in key-indexed counting, then using
a method like Program 11.5 to move the keys.

•• 10.20 Write a program to solve the generalR-way partitioning problem, using
the method sketched in Exercise 10.19.

◦10.21 Implement a stringItem class for C-style strings. Use String keys
with Unicode value 0 as a virtual end-of-string marker. (Implement digit
such that it returns 0 when d is not less than the string length).
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◦10.22 Modify Program 10.2 so that it sorts Java String objects, by using the
length() method to assign keys whose characters have all been examined to
bin 0 and adjusting the other bins as appropriate.

10.23 Develop a wordItem implementation based on a key generator that
generates random 80-byte keys. Use this implementaton to generateN random
keys, then sort them with MSD radix sort, for N = 103, 104, 105, and 106.
Instrument your program to print out the total number of key bytes examined
for each sort.

◦10.24 What is the rightmost key byte position that you would expect the
program in Exercise 10.23 to access for each of the given values of N? If
you have done that exercise, instrument your program to keep track of this
quantity, and compare your theoretical result with empirical results.

10.25 Develop a wordItem implementation based on a key generator that
generates keys by shuffling a random 80-byte sequence. Use your implemen-
tation to generate N random keys, then sort them with MSD radix sort, for
N = 103, 104, 105, and 106. Compare your performance results with those
for the random case (see Exercise 10.23).

10.26 What is the rightmost key byte position that you would expect the
program in Exercise 10.25 to access for each value of N? If you have done
that exercise, compare your theoretical result with empirical results from your
program.

10.27 Develop a wordItem implementation based on a key generator that
generates 30-byte random objects made up of three fields: a four-byte field
with one of a set of 10 given strings; a 10-byte field with one of a set of 50
given strings; a 1-byte field with one of two given values; and a 15-byte field
with random left-justified strings of letters equally likely to be four through 15
characters long. Use your key generator to generate N random keys, then sort
them with MSD radix sort, for N = 103, 104, 105, and 106. Instrument your
program to print out the total number of key bytes examined. Compare your
performance results with those for the random case (see Exercise 10.23).

10.28 Modify Program 10.2 to implement the bin-span heuristic. Test your
program on the data of Exercise 10.27.

10.4 Three-Way Radix Quicksort

Another way to adapt quicksort for MSD radix sorting is to use three-
way partitioning on the leading byte of the keys, moving to the next
byte on only the middle subfile (keys with leading byte equal to that
of the partitioning element). This method is not difficult to implement
(the one-sentence description plus the three-way partitioning code in
Program 7.5 suffices, essentially), and it adapts well to a variety of
situations.
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Program 10.3 is an implementation of this method for Java
String objects. The less and equal methods that are used in this
code are supposed to compare the d+1st character of two String

objects whose first d characters are known to match. They may be
implemented as follows:

static boolean less(String s, String t, int d)
{
if (t.length() <= d) return false;
if (s.length() <= d) return true;
return s.charAt(d) < t.charAt(d);

}
static boolean equal(String s, String t, int d)

{ return !less(s, t, d) && !less(t, s, d); }

These methods are only invoked for strings that both have at least d
characters (which are known to match). If both strings have more
than d characters, less simply compares the indicated characters.
Otherwise, if t has d characters, then s cannot be less than t—either s
has d characters (in which case s and t are equal) or s has more than
d characters (in which case t is less than s).

With slight modification, Program 10.3 can also be adapted for
use with fixed-length keys (see Exercise 10.30) or with C-style strings
(see Exercise 10.31). In both cases, the implementation of less is much
simpler than the one above. This fact is significant because the inner
loop of the algorithm is nothing more than a pointer increment and a
less invocation, so speeding up less speeds up the whole program.

In essence, doing three-way radix quicksort amounts to sorting
the file on the leading characters of the keys (using quicksort), then
applying the method recursively on the remainder of the keys. For
sorting strings, the method compares favorably with normal quicksort
and with MSD radix sort. Indeed, it might be viewed as a hybrid of
these two algorithms.

To compare three-way radix quicksort to standard MSD radix
sort, we note that it divides the file into only three parts, so it does not
get the benefit of the quick multiway partition, especially in the early
stages of the sort. On the other hand, for later stages, MSD radix
sort involves large numbers of empty bins, whereas three-way radix
quicksort adapts well to handle duplicate keys, keys that fall into a
small range, small files, and other situations where MSD radix sort
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Program 10.3 Three-way radix quicksort

This MSD radix sort for Java String objects is essentially the same code
as quicksort with three-way partitioning (Program 7.4), but with the
following changes: (i) key references become key-character references,
(ii) the current character position is a parameter to the recursive routine,
and (iii) the recursive calls for the middle subfile move to the next
character. We avoid moving past the ends of keys by checking whether
d is equal to the length of v before recursive calls that move to the next
byte. When d is equal to the length of v, the left subfile is empty, the
middle subfile corresponds to the keys that the program has found to be
equal, and the right subfile corresponds to longer strings that need to be
processed further. For fixed-length keys, remove the tests guarding the
recursive calls for d+1 and add a statement at the beginning that returns
if d exceeds key length, as in Program 10.2.

static void StrSort(String a[], int l, int r, int d)

{

if (r <= l) return;

String v = a[r];

int i = l-1, j = r, p = l-1, q = r, k;
while (i < j)

{

while (less(a[++i], v, d)) ;

while (less(v, a[--j], d)) if (j == l) break;

if (i > j) break;

exch(a, i, j);

if (equal(a[i], v, d)) exch(a, ++p, i);

if (equal(v, a[j], d)) exch(a, --q, j);

}

if (p == q) // first d+1 chars of all keys equal

if (v.length() > d) StrSort(a, l, r, d+1);

if (p == q) return;

if (less(a[i], v, d)) i++;

for (k = l; k <= p; k++, j--) exch(a, k, j);
for (k = r; k >= q; k--, i++) exch(a, k, i);

StrSort(a, l, j, d);

if ((i == r) && (equal(a[i], v, d))) i++;

if (v.length() >= d) StrSort(a, j+1, i-1, d+1);

StrSort(a, i, r, d);

}
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Figure 10.11
Three-way radix quicksort

now gig ace ago ago
for for bet bet ace
tip dug dug and and

ilk ilk cab ace bet

dim dim dim cab
tag ago ago caw
jot and and cue

sob fee egg egg
nob cue cue dug
sky caw caw dim

hut hut fee
ace ace for
bet bet few

men cab ilk
egg egg gig
few few hut

jay jay jam
owl jot jay

joy joy joy
rap jam jot

gig owl owl men

wee wee now owl
was was nob nob
cab men men now

wad wad rap

caw sky sky sky sky
cue nob was tip sob

fee sob sob sob tip tar
tap tap tap tap tap tap
ago tag tag tag tag tag

tar tar tar tar tar tip

dug tip tip was
and now wee wee
jam rap wad wad

We divide the file into three parts:
words beginning with a through
i, words begininning with j, and
words beginning with k through z.
Then, we sort recursively.

might run slowly. Of particular importance is that the partitioning
adapts to different types of nonrandomness in different parts of the
key. Furthermore, no auxiliary array is required. Balanced against all
these advantages is that extra exchanges are required to get the effect
of the multiway partition via a sequence of three-way partitions when
the number of subfiles is large.

Figure 10.11 shows an example of the operation of this method
on the three-letter-word sorting problem of Figure 10.7. Figure 10.12
depicts the recursive-call structure. Each node corresponds to precisely
three recursive calls: for keys with a smaller first byte (left child), for
keys with first byte equal (middle child), and for keys with first byte
larger (right child).

When the sort keys fit the abstraction of Section 10.2, standard
quicksort (and all the other sorts in Chapters 6 through 9) can be
viewed as an MSD radix sort, because the compare method has to
access the most significant part of the key first (see Exercise 10.5). For
example, if the keys are strings, the compare method should access
only the leading bytes if they are different, the leading 2 bytes if the
first bytes are the same and the second different, and so forth. The
standard algorithm thus automatically realizes some of the same per-
formance gain that we seek in MSD radix sorting (see Section 7.7). The
essential difference is that the standard algorithm cannot take special
action when the leading bytes are equal. Indeed, one way to think of
Program 10.3 is as a way for quicksort to keep track of what it knows
about leading digits of items after they have been involved in multi-
ple partitions. In the small subfiles, where most of the comparisons
in the sort are done, the keys are likely to have many equal leading
bytes. The standard algorithm has to scan over all those bytes for each
comparison; the three-way algorithm avoids doing so.

Consider a case where the keys are long (and are fixed length,
for simplicity), but most of the leading bytes are all equal. In such
a situation, the running time of normal quicksort would be propor-
tional to the word length times 2N lnN , whereas the running time of
the radix version would be proportional to N times the word length
(to discover all the leading equal bytes) plus 2N lnN (to do the sort
on the remaining short keys). That is, this method could be up to
a factor of lnN faster than normal quicksort, counting just the cost
of comparisons. It is not unusual for keys in practical sorting appli-
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Figure 10.12
Recursive structure of three-

way radix quicksort
This tree-trie combination corre-
sponds to a substitution of the
26-way nodes in the trie in Fig-
ure 10.10 by ternary binary search
trees, as illustrated in Figure 10.13.
Any path from the root to the bot-
tom of the tree that ends in a mid-
dle link defines a key in the file,
given by the characters in the
nodes left by middle links in the
path. Figure 10.10 has 1035 null
links that are not depicted; all
the 155 null links in this tree are
shown here. Each null link cor-
responds to an empty bin, so this
difference illustrates how three-way
partitioning can cut dramatically
the number of empty bins encoun-
tered in MSD radix sorting.

cations to have characteristics similar to this artificial example (see
Exercise 10.29).

Another interesting property of three-way radix quicksort is that
it has no direct dependencies on the size of the radix. For other radix
sorting methods, we have to maintain an auxiliary array indexed by
radix value, and we need to ensure that the size of this array is not
appreciably larger than the file size. For this method, there is no such
table. Taking the radix to be extremely large (larger than the word
size) reduces the method to normal quicksort, and taking the radix to
be 2 reduces it to binary quicksort, but intermediate values of the radix
give us an efficient way to deal with equal stretches among pieces of
keys.

For many practical applications, we can develop a hybrid method
with excellent performance by using standard MSD radix sort for large
files, to get the advantage of multiway partitioning, and a three-way
radix quicksort with a smaller radix for smaller files, to avoid the
negative effects of large numbers of empty bins.

Three-way radix quicksort is also applicable when the keys to be
sorted are vectors (either in the mathematical sense or in the sense of
Java Vector objects). That is, if the keys are made up of independent
components (each an abstract key), we might wish to reorder records
such that they are in order according to the first components of the
keys, and in order according to the second component of the keys if
the first components are equal, and so forth. We can think of vector
sorting as a generalization of radix sorting where we take R to be
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Figure 10.13
Example of trie nodes for

three-way radix quicksort
Three-way radix quicksort ad-
dresses the empty-bin problem for
MSD radix sort by doing three-way
partitioning to eliminate 1 byte
value and (recursively) to work
on the others. This action corre-
sponds to replacing each M-way
node in the trie that describes the
recursive call structure of MSD
radix sort (see Figure 10.9) by a
ternary tree with an internal node
for each nonempty bin. For full
nodes (left), this change costs time
without saving much space, but for
empty nodes (right), the time cost
is minimal and the space savings is
considerable.

arbitrarily large. When we adapt Program 10.3 to this application, we
refer to it as multikey quicksort.

Exercises

10.29 For d > 4, suppose that keys consist of d bytes, with the final 4 bytes
having random values and all the other bytes having value 0. Estimate the
number of bytes examined when you sort the file using three-way radix quick-
sort (Program 10.3) and normal quicksort (Program 7.1) for files of size N
for large N , and calculate the ratio of the running times.

10.30 Modify Program 10.3 so that it sorts objects with fixed-length keys,
using type wordItem (see Exercise 10.3), as in Program 10.2.

10.31 Modify Program 10.3 so that it sorts objects with keys that are C-style
strings, using type stringItem (see Exercise 10.21).

10.32 Empirically determine the byte size for which three-way radix quicksort
runs fastest, for random 64-bit keys with N = 103, 104, 105, and 106.

• 10.33 Develop an implementation of three-way radix quicksort for linked
lists.

10.34 Develop an implementation of multikey quicksort for the case where
the keys are vectors of t floating-point numbers, using Vector objects and an
implementation of equals that cconsiders two floating point numbers to be
equal if they differ in absolute value by less than 10−6.

10.35 Using the key generator of Exercise 10.23, run three-way radix quick-
sort for N = 103, 104, 105, and 106. Compare its performance with that of
MSD radix sort.

10.36 Using the key generator of Exercise 10.25, run three-way radix quick-
sort for N = 103, 104, 105, and 106. Compare its performance with that of
MSD radix sort.

10.37 Using the key generator of Exercise 10.27, run three-way radix quick-
sort for N = 103, 104, 105, and 106. Compare its performance with that of
MSD radix sort.
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Figure 10.14
LSD radix sort example

now sob cab ace
for nob wad ago
tip cab tag and
ilk wad jam bet
dim and rap cab
tag ace tap caw
jot wee tar cue
sob cue was dim
nob fee caw dug
sky tag raw egg
hut egg jay fee
ace gig ace few
bet dug wee for
men ilk fee gig
egg owl men hut
few dim bet ilk
jay jam few jam
owl men egg jay
joy ago ago jot
rap tip gig joy
gig rap dim men
wee tap tip nob
was for sky now
cab tar ilk owl
wad was and rap
tap jot sob raw
caw hut nob sky
cue bet for sob
fee you jot tag
raw now you tap
ago few now tar
tar caw joy tip
jam raw cue wad
dug sky dug was
you jay hut wee
and joy owl you

Three-letter words are sorted in
three passes (left to right) with LSD
radix sorting.

10.5 LSD Radix Sort

An alternative radix-sorting method is to examine the bytes from right
to left. Figure 10.14 shows how our three-letter word sorting task
is accomplished in just three passes through the file. We sort the
file according to the final letter (using key-indexed counting), then
according to the middle letter, then according to the first letter.

It is not easy, at first, to be convinced that the method works; in
fact, it does not work at all unless the sort method used is stable (see
Definition 6.1). Once stability has been identified as being significant,
a simple proof that LSD radix sorting works is easy to articulate: After
putting keys into order on their i trailing bytes (in a stable manner),
we know that any two keys appear in proper order (considering just
those bytes) in the file either because the first of their i trailing bytes
are different, in which case the sort on that byte put them in the proper
order, or because the first of their ith trailing bytes are the same, in
which case they are in proper order because of stability. Stated another
way, if the w − i bytes that have not been examined for a pair of keys
are identical, any difference between the keys is restricted to the i bytes
already examined, and the keys have been properly ordered, and will
remain so because of stability. If, on the other hand, the w−i bytes that
have not been examined are different, the i bytes already examined do
not matter, and a later pass will correctly order the pair based on the
more-significant differences.

The stability requirement means, for example, that the partition-
ing method used for binary quicksort could not be used for a binary
version of this right-to-left sort. On the other hand, key-indexed
counting is stable, and immediately leads to a classic and efficient al-
gorithm. Program 10.4 is an implementation of this method. An
auxiliary array for the distribution seems to be required—the tech-
nique of Exercises 10.19 and 10.20 for doing the distribution in place
sacrifices stability to avoid using the auxiliary array.

LSD radix sorting is the method used by old computer-card–
sorting machines. Such machines had the capability of distributing
a deck of cards among 10 bins, according to the pattern of holes
punched in the selected columns. If a deck of cards had numbers
punched in a particular set of columns, an operator could sort the
cards by running them through the machine on the rightmost digit,
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Program 10.4 LSD radix sort

As does Program 10.2, this program implements key-indexed counting
on the bytes in wordItem keys, but moving right to left. The key-
indexed counting implementation must be stable. If R is 2 (and therefore
bytesword and bitsword are the same), this program is straight radix
sort—a right-to-left bit-by-bit radix sort (see Figure 10.15).

static void radixLSD(wordItem[] a, int l, int r)

{ wordItem aux[] = new wordItem[a.length];

for (int d = wordItem.bytesword-1; d >=0; d--)

{ int i, j, cnt[] = new int[wordItem.R+1];

for (j = 0; j < wordItem.R; j++) cnt[j] = 0;

for (i = l; i <= r; i++)

cnt[a[i].digit(d) + 1]++;

for (j = 1; j < wordItem.R; j++)

cnt[j] += cnt[j-1];

for (i = l; i <= r; i++)

aux[cnt[a[i].digit(d)]++] = a[i];

for (i = l; i <= r; i++) a[i] = aux[i-l];
}

}

then picking up and stacking the output decks in order, then running
them through the machine on the next-to-rightmost digit, and so forth,
until getting to the first digit. The physical stacking of the cards is a
stable process, which is mimicked by key-indexed counting sort. Not
only was this version of LSD radix sorting important in commercial
applications in the 1950s and 1960s, but it was also used by many
cautious programmers, who would punch sequence numbers in the
final few columns of a program deck so as to be able to put the deck
back in order mechanically if it were accidentally dropped.

Figure 10.15 depicts the operation of binary LSD radix sort on
our sample keys, for comparison with Figure 10.3. For these 5-bit
keys, the sort is completed in five passes, moving right to left through
the keys. Sorting records with single-bit keys amounts to partition-
ing the file such that all the records with 0 keys appear before all the
records with 1 keys. As just mentioned, we cannot use the partitioning
strategy that we discussed at the beginning of this chapter in Pro-
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A 10000 Figure 10.15
LSD (binary) radix sort exam-

ple (key bits exposed)
This diagram depicts a right-to-left
bit-by-bit radix sort working on our
file of sample keys. We compute
the ith column from the (i − 1)st
column by extracting (in a stable
manner) all the keys with a 0 in
the ith bit, then all the keys with
a 1 in the ith bit. If the (i − 1)st
column is in order on the trailing
(i − 1) bits of the keys before the
operation, then the ith column is
in order on the trailing i bits of
the keys after the operation. The
movement of the keys in the third
stage is indicated explicitly.

gram 10.1, even though it seems to solve this same problem, because
it is not stable. It is worthwhile to look at radix-2 sorting, because it is
often appropriate for high-performance machines and special-purpose
hardware (see Exercise 10.44). In software, we use as many bits as
we can to reduce the number of passes, limited only by the size of the
array for the counts (see Figure 10.16).

It is typically difficult to apply the LSD approach to a string-
sorting application because of variable-length keys. For MSD sorting,
it is simple enough to distinguish keys according to their leading bytes,
but LSD sorting is based on a fixed-length key, with the leading keys
getting involved for only the final pass. Even for (long) fixed-length
keys, LSD radix sorting would seem to be doing unnecessary work on
the right parts of the keys, since, as we have seen, only the left parts of
the keys are typically used in the sort. We shall see a way to address
this problem in Section 10.7, after we have examined the properties of
radix sorts in detail.

Exercises

10.38 Using the key generator of Exercise 10.23, run LSD radix sort for
N = 103, 104, 105, and 106. Compare its performance with that of MSD radix
sort.

10.39 Using the key generators of Exercises 10.25 and 10.27, run LSD radix
sort for N = 103, 104, 105, and 106. Compare its performance with that of
MSD radix sort.

10.40 Show the (unsorted) result of trying to use an LSD radix sort based on
the binary quicksort partitioning method for the example of Figure 10.15.
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Figure 10.16
Dynamic characteristics of

LSD radix sort
This diagram shows the stages of
LSD radix sort on random 8-bit
keys, for both radix 2 (left) and
radix 4, which comprises every
other stage from the radix-2 dia-
gram (right). For example, when
two bits remain (second-to-last
stage on the left, next-to-last stage
on the right), the file consists of
four intermixed sorted subfiles con-
sisting of the keys beginning with
00, 01, 10, and 11.

.10.41 Show the result of using LSD radix sort on the leading two characters
for the set of keys now is the time for all good people to come the
aid of their party.

• 10.42 Develop an implementation of LSD radix sort using linked lists.

• 10.43 Find an efficient method that (i) rearranges the records of a file such
that all those whose keys begin with a 0 bit come before all those whose keys
begin with a 1 bit, (ii) uses extra space proportional to the square root of the
number of records (or less), and (iii) is stable.

• 10.44 Implement a method that sorts an array of 32-bit words using only the
following abstract operation: Given a bit position i and a pointer into the
array a[k], rearrange a[k], a[k+1], . . ., a[k+63] in a stable manner such that
those words with a 0 bit in position i appear before those words with a 1 bit
in position i.

10.6 Performance Characteristics of Radix Sorts

The running time of LSD radix sort for sorting N records with w-byte
keys is proportional toNw, because the algorithm makesw passes over
all N keys. This analysis does not depend on the input, as illustrated
in Figure 10.17.

For long keys and short bytes, this running time is comparable
to N lgN : For example, if we are using a binary LSD radix sort to
sort 1 billion 32-bit keys, then w and lgN are both about 32. For
shorter keys and longer bytes this running time is comparable to N :
For example, if a 16-bit radix is used on 64-bit keys, then w will be 4,
a small constant.

To compare properly the performance of radix sort with the per-
formance of comparison-based algorithms, we need to account care-
fully for the bytes in the keys, rather than for only the number of
keys.

Property 10.1 The worst case for radix sorting is to examine all the
bytes in all the keys.

In other words, the radix sorts are linear in the sense that the time
taken is at most proportional to the number of digits in the input. This
observation follows directly from examination of the programs: No
digit is examined more than once. This worst case is achieved, for all
the programs we have examined, when all the keys are equal.
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Figure 10.17
Dynamic characteristics of

LSD radix sort on vari-
ous types of files

These diagrams illustrate the stages
of LSD radix sort for files of size
700 that are random, Gaussian,
nearly ordered, nearly reverse or-
dered, and randomly ordered with
10 distinct key values (left to right).
The running time is insensitive to
the initial order of the input. The
three files that contain the same set
of keys (the first, third, and fourth
all are a permutation of the inte-
gers from 1 to 700) have similar
characteristics near the end of the
sort.
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As we have seen, for random keys and for many other situations,
the running time of MSD radix sorting can be sublinear in the total
number of data bits, because the whole key does not necessarily have
to be examined. The following classical result holds for arbitrarily
long keys:

Property 10.2 Binary quicksort examines about N lgN bits, on av-
erage, when sorting keys composed of random bits.

If the file size is a power of 2 and the bits are random, then we
expect one-half of the leading bits to be 0 and one-half to be 1, so
the recurrence CN = 2CN/2 + N should describe the performance,
as we argued for quicksort in Chapter 7. Again, this description of
the situation is not entirely accurate, because the partition falls in the
center only on the average (and because the number of bits in the
keys is finite). However, the partition is much more likely to be near
the center for binary quicksort than for standard quicksort, so the
leading term of the running time is the same as it would be were the
partitions perfect. The detailed analysis that proves this result is a
classical example in the analysis of algorithms, first done by Knuth
before 1973 (see reference section).

This result generalizes to apply to MSD radix sort. However, since our
interest is generally in the total running time, rather than in only the
key characters examined, we have to exercise caution, because part of
the running time of MSD radix sort is proportional to the size of the
radix R and has nothing to do with the keys.

Property 10.3 MSD radix sort with radix R on a file of size N

requires at least 2N + 2R steps.

MSD radix sort involves at least one key-indexed counting pass,
and key-indexed counting consists of at least two passes through the
records (one for counting and one for distributing), accounting for at
least 2N steps, and two passes through the counters (one to initialize
them to 0 at the beginning and one to determine where the subfiles are
at the end), accounting for at least 2R steps.

This property almost seems too obvious to state, but it is essential to
our understanding of MSD radix sort. In particular, it tells us that we
cannot conclude that the running time will be low from the fact thatN
is small, because R could be much larger than N . In short, some other
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method should be used for small files. This observation is a solution to
the empty-bins problem that we discussed at the end of Section 10.3.
For example, if R is 256 and N is 2, MSD radix sort will be up to
128 times slower than the simpler method of just comparing elements.
The recursive structure of MSD radix sort ensures that the recursive
program will call itself for large numbers of small files. Therefore,
ignoring the empty-bins problem could make the whole radix sort up
to 128 times slower than it could be for this example. For intermediate
situations (for example, suppose that R is 256 and N is 64), the cost
is not so catastrophic, but is still significant. Using insertion sort
is not wise, because its expected cost of N2/4 comparisons is too
high; ignoring the empty bins is not wise, because there are significant
numbers of them. The simplest way to cope with this problem is to
use a radix that is less than the file size.

Property 10.4 If the radix is always less than the file size, the number
of steps taken by MSD radix sort is within a small constant factor of
N logRN on the average (for keys comprising random bytes), and
within a small constant factor of the number of bytes in the keys in the
worst case.

The worst-case result follows directly from the preceding discussion,
and the analysis cited for Property 10.2 generalizes to give the average-
case result. For large R, the factor logRN is small, so the total time
is proportional to N for practical purposes. For example, if R = 216,
then logRN is less than 3 for all N < 248, which value certainly
encompasses all practical file sizes.

As we do from Property 10.2 we have from Property 10.4 the
important practical implication that MSD radix sorting is actually a
sublinear function of the total number of bits for random keys that
are not short. For example, sorting 1 million 64-bit random keys will
require examining only the leading 20 to 30 bits of the keys, or less
than one-half of the data.

Property 10.5 Three-way radix quicksort uses 2N lnN byte com-
parisons, on the average, to sort N (arbitrarily long) keys.

There are two instructive ways to understand this result. First, con-
sidering the method to be equivalent to quicksort partitioning on the
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leading byte, then (recursively) using the same method on the sub-
files, we should not be surprised that the total number of operations is
about the same as for normal quicksort—but they are single-byte com-
parisons, not full-key comparisons. Second, considering the method
from the point of view depicted in Figure 10.13, we expect that the
N logRN running time from Property 10.3 should be multiplied by a
factor of 2 lnR because it takes quicksort 2R lnR steps to sort R bytes,
as opposed to the R steps for the same bytes in the trie. We omit the
full proof (see reference section).

Property 10.6 LSD radix sort can sort N records with w-bit keys
in w/ lgR passes, using extra space for R counters (and a buffer for
rearranging the file).

Proof of this fact is straightforward from the implementation. In
particular, if we take R = 2w/4, we get a four-pass linear sort.

Exercises
10.45 Suppose that an input file consists of 1000 copies of each of the num-
bers 1 through 1000, each in a 32-bit word. Describe how you would take
advantage of this knowledge to get a fast radix sort.

10.46 Suppose that an input file consists of 1000 copies of each of a thousand
different 32-bit numbers. Describe how you would take advantage of this
knowledge to get a fast radix sort.

10.47 What is the total number of bytes examined by three-way radix quick-
sort when sorting fixed-length bytestrings, in the worst case?

10.48 Empirically compare the number of bytes examined by three-way radix
quicksort for long strings with N = 103, 104, 105, and 106 with the number of
comparisons used by standard quicksort for the same files.

◦10.49 Give the number of bytes examined by MSD radix sort and three-way
radix quicksort for a file of N keys A, AA, AAA, AAAA, AAAAA, AAAAAA, . . . .

10.7 Sublinear-Time Sorts

The primary conclusion that we can draw from the analytic results of
Section 10.6 is that the running time of radix sorts can be sublinear
in the total amount of information in the keys. In this section, we
consider practical implications of this fact.

The LSD radix-sort implementation given in Section 10.5 makes
bytesword passes through the file. By making R large, we get an
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Figure 10.18
Dynamic characteristics of

LSD radix sort on MSD
bits

When keys are random bits, sort-
ing the file on the leading bits of
the keys brings it nearly into or-
der. This diagram compares a six-
pass LSD radix sort (left) on a file
of random 6-bit keys with a three-
pass LSD radix sort, which can be
followed by an insertion-sort pass
(right). The latter strategy is nearly
twice as fast.

efficient sorting method, as long asN is also large and we have space for
R counters. As mentioned in the proof of Property 10.5, a reasonable
choice is to make lgR (the number of bits per byte) about one-quarter
of the word size, so that the radix sort is four key-indexed counting
passes. Each byte of each key is examined, but there are only four
digits per key. This example corresponds directly to the architectural
organization of many computers: one typical organization has 32-bit
words, each consisting of four 8-bit bytes. We extract bytes, rather
than bits, from words, which approach is likely to be much more
efficient on many computers. Now, each key-indexed–counting pass
is linear, and, because there are only four of them, the entire sort is
linear—certainly the best performance we could hope for in a sort.

In fact, it turns out that we can get by with only two key-indexed
counting passes. We do so by taking advantage of the fact that the
file will be almost sorted if only the leading w/2 bits of the w-bit
keys are used. As we did with quicksort, we can complete the sort
efficiently by using insertion sort on the whole file afterward. This
method is a trivial modification to Program 10.4. To do a right-to-
left sort using the leading one-half of the keys, we simply start the
outer for loop at bytesword/2-1, rather than bytesword-1. Then,
we use a conventional insertion sort on the nearly ordered file that
results. Figures 10.3 and 10.18 provide convincing evidence that a
file sorted on its leading bits is well ordered. Insertion sort would use
only six exchanges to sort the file in the fourth column of Figure 10.3,
and Figure 10.18 shows that a larger file sorted on only the leading
one-half of its bits also could be sorted efficiently by insertion sort.

For some file sizes, it might make sense to use the extra space
that would otherwise be used for the auxiliary array to try to get by
with just one key-indexed–counting pass, doing the rearrangement in
place. For example, sorting 1 million random 32-bit keys could be
done with one key-indexed–counting sort on the leading 20 bits, then
an insertion sort. To do that, we need space just for the (1 million)
counters—significantly less than would be needed for an auxiliary
array. Using this method is equivalent to using standard MSD radix
sort with R = 220, although it is essential that a small radix be used
for small files for such a sort (see the discussion after Property 10.4).

The LSD approach to radix sorting is widely used, because it
involves extremely simple control structures and its basic operations
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are suitable for machine-language implementation, which can directly
adapt to special-purpose high-performance hardware. In such an en-
vironment, it might be fastest to run a full LSD radix sort. We need
to have space for just N extra references (and R counters) to use LSD
radix sort, and this investment yields a method that can sort random
files with only three or four passes.

In conventional programming environments, the inner loop of
the key-indexed–counting program on which the radix sorts are based
contains a substantially higher number of instructions than do the inner
loops of quicksort or mergesort. This property of the implementations
implies that the sublinear methods that we have been describing may
not be as much faster than quicksort (say) as we might expect in many
situations.

General-purpose algorithms such as quicksort are more widely
used than radix sort, because they adapt to a broader variety of ap-
plications. The primary reason for this state of affairs is that the key
abstraction on which radix sort is built is less general than the one
that we used in Chapters 6 through 9. Our use of the ITEM inter-
face to specify that items to be sorted must have a less method (and
Java’s use of Comparable and compareTo for the same purpose) is to
have the client provide the comparison method. This arrangement not
only handles situations where the client can use specialized knowledge
about complex keys to implement a fast comparison, but also allows
us to sort using an ordering relation that may not involve keys at all.
Radix sorting may not be applicable in such situations.

When any of them could be used, the choice among quicksort
and the various radix sort algorithms (and related versions of quick-
sort!) that we have considered in this chapter will depend not only on
features of the application (such as key, record, and file size) but also
on features of the programming and machine environment that relate
to the efficiency of access and use of individual bits and bytes. Ta-
bles 10.1 and 10.2 give empirical results in support of the conclusion
that the linear- and sublinear-time performance results that we have
discussed for various applications of radix sorts make these sorting
methods an attractive choice for a variety of suitable applications.

Exercises

.10.50 What is the major drawback of doing LSD radix sorting on the leading
bits of the keys, then cleaning up with insertion sort afterward?
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Table 10.1 Empirical study of radix sorts (integer keys)

These relative timings for radix sorts on random files ofN 32-bit integers
(all with a cutoff to insertion sort for N less than 16) indicate that radix
sorts can be among the fastest sorts available, used with care. If we use a
huge radix for tiny files, we ruin the performance of MSD radix sort, but
adapting the radix to be less than the file size cures this problem. The
fastest method for integer keys is LSD radix sort on the leading one-half
of the bits, which we can speed up further by paying careful attention to
the inner loop (see Exercise 10.51).

4-bit bytes 8-bit bytes 16-bit bytes

N Q M L M L L* M L M*

12500 2 7 11 28 4 2 52 5 8

25000 5 14 21 29 8 4 54 8 15

50000 10 49 43 35 18 9 58 15 39

100000 21 77 92 47 39 18 67 30 77

200000 49 133 185 72 81 39 296 56 98

400000 102 278 377 581 169 88 119398 110 297

800000 223 919 732 6064 328 203 1532492 219 2309

Key:
Q Quicksort, standard (Program 7.1)
M MSD radix sort, standard (Program 10.2)
L LSD radix sort (Program 10.4)
M* MSD radix sort, radix adapting to file size
L* LSD radix sort on MSD bits

• 10.51 Develop an implementation of LSD radix sort for 32-bit keys with as
few instructions as possible in the inner loop.

10.52 Implement three-way radix quicksort such that the insertion sort for
small files does not use leading bytes that are known to be equal in compar-
isons.

10.53 Given 1 million random 32-bit keys, find the choice of byte size that
minimizes the total running time when we use the method of using LSD radix
sort on the first two bytes, then using insertion sort to clean up.

10.54 Answer Exercise 10.53 for 1 billion 64-bit keys.

10.55 Answer Exercise 10.54 for three-pass LSD radix sort.
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Table 10.2 Empirical study of radix sorts (string keys)

These relative timings for various sorts on the first N words of Moby
Dick (all, except heapsort, with a cutoff to insertion sort for N less than
16) indicate that the MSD-first approach is effective for string data. The
cutoff for small subfiles is less effective for three-way radix quicksort
than for the other methods, and is not effective at all unless we modify
the insertion sort to avoid going through the leading parts of the keys
(see Exercise 10.52).

N Q T M F R X X*

12500 7 6 9 9 8 6 5

25000 14 12 18 19 15 11 10

50000 34 26 39 49 34 25 24

100000 83 61 87 114 71 57 54

Key:
Q Quicksort, standard (Program 7.1)
T Quicksort with three-way partitioning (Program 7.5)
M Mergesort (Program 8.2)
F Heapsort with Floyd’s improvement (see Section 9.4)
R MSD radix sort (Program 10.2)
X Three-way radix quicksort (Program 10.3)
X* Three-way radix quicksort (with cutoff)


