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i. IntrQduction 

A major goal of complexity theory is to offer an understanding of why some 

specific problems are inherently more difficult to compute than others. The pursuit 

of this goal has two complementary facets, the positive one of finding fast algorithms, 

and the negative one of proving lower bounds on the inherent complexity of problems. 

Finding a proof of such a lower bound is equivalent to giving a property of the class 

of all algorithms for the problem. Because of the sheer richness of such classes, 

even for relatively simple problems~ very little is yet understood about them and 

consequently the search for lower bound proofs has met with only isolated successes. 

The poverty of our current knowledge can be illustrated by stating some major 

current research goals for three distinct models of computation. In each case com- 

plexity is measured in terms of n , the sum of the number of inputs and outputs: 

(A) Discrete problems: For some natural problem known to be computable in polynomial 

time on a multi-tape Turing machine (TM) prove that no TM exists that computes it in 

time O(n). This problem is open even when TMs are restricted to be oblivious [12]. 

(B) Discrete finite problems: For some problem computable in polynomial time on a 

TM sho~ that no comoinational circuit over a complete basis exists that is of size 

o(~). 
(C) Algebraic problems: For some natural sets of multinomials of constant degree 

over a ring show that no straight-line program consisting of the operations +,-, 

and ×, exists of size O(n). 

Known restuLts on lower bounds are excluded by the above specifications either 

because they assume other restrictions on the models, or for the following reasons: 

For TMs lower bounds for natural problems have only been found for those of apparent 

or provable exponential complexity or worse [11,6,7]. For unrestricted combinational 

circuits all arguments involve counting. The only problems that have been proved of 

nonlinear complexity are those that can encode a co~o-nting process and are of expon- 

ential complexity or more [4,20]. For algebraic problems ~degree argument~ have been 

successfully applied to natural problems, but only when the degrees grow with n [21]. 
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Algebraic independence arguments have been applied only to problems which we would 

not regard here as natural. (Various linear lower bounds do exist [9,14,19] but we 

are not concerned with these here). 

This paper focusses on one particular approach to attempting to understand 

computations for the above models. The approach consists of analysing the global 

flow of information in an algorithm by reducing this to a combination of graph- 

theoretic, algebraic and combinatorial problems. We shall restrict ourselves to 

lower bound arguments and shall omit some related results that exploit the same app- 

roach but are better regarded as positive applications of it [7,13,24]. The hope 

of finding positive byproducts, in particular new surprising algorithms, remains, 

however, a major incentive in our pursuit of negative results. 

Though organized as a survey article, the main purpose of this paper is to 

present some previously unpublished results. Among other things they show, appar- 

ently for the first time, that a significant computatiqnal property (the non-achier- 

ability of size O(n) and depth 0(log n) simultaneously) of unrestricted 

straight-line arithmetic programs for certain problems can be reduced to 

non-computational questions (see §6). The grounds on which we claim that a "meaning- 

fud. reduction" has been demonstrated are perhaps the weakest that can be allowed. 

Nevertheless, in the absence of alternative approaches to understanding these problems, 

we believe that these grounds are sufficient to make the related questions raised 

worthy of serious investigation. 

2. Preliminaries 

In the main we follow [23] and [25] for definitions: A straight-line program 

is a sequence of assignments each of the form x :=f(y,Z) where f belongs to a 

set of binary functions and x,y,z belong to a set of variables that can take values 

in some domain. The only restriction is that any variable x occurring on the 

left-hand side of some assignment cannot occur in any assignment earlier in the 

sequence. The variables that never occur on the left-hand side of ann instruction 

are called input variables. The graph of a straight-line program is an acyclic 

directed graph that has a node, denoted by u, for each variable u in the program, 

and directed edges (y,x) and (~,x) for each instruction x :=f(y,z). 

A linear form in indeterminates Xl,...,x n over a field F is any expression of 

where each ~.sF, A linear program over F on inputs Xl,...,x n the form Z~ix i z 

is a straight-line program with (Xl,...,x n) as input variables and function set 

{f~,~ I X,~ e F} where f~, (u,v) = ~u + ~v. The importance of linear programs is 

that~ for certain fields F, for computing the values of sets of linear forms in 

Xl,...,x n with each x i ranging over F, linear programs are optimal to within a 

constant factor as compared with straight-line programs in which unrestricted use of 

all the operations {+~-,*,÷} is allowed [26,22,3] . Examples of such fields are 



the real and complex numbers. Hence the results in §6 apply to the unrestricted 

model in the case of arithmetic problems over these fields. (Note that there is a 

similar correspondence between bilinear forms and bilinear programs, and this can 

be exploited in the same way.) 

Straight-line programs over GF(2) define just the class of combinational circuits 

over the complete basis <and, exclusive-or> . Also, the combinational complexity 

of a function bounds its oblivious TM complexity from below by a constant factor. 

Unfortunately the optimality of linear programs for evaluating sets of linear forms 

over GF(2) is at present unknown. Hence the results in §6 may be relevant only for 

the restricted class of circuits corresponding to linear programs. 

A "graph-theoretic argument" for a lower bound on the complexity of a problem P 

consists of two parts: 

(i) For some graph theoretic property X a proof that the graph of any program for P 

must have property X. 

(ii) A proof that any graph with property X must be of size superlinear in n . 

We note that the graph of any algorithm has indegree two, and hence the number 

of edges is bounded by twice the number of nodes. Conversely~ isolated modes are 

clearly redundant. Hence, by defining the size of a graph to be the number of edges, 

we will be measuring, to within a constant factor, both the number of nodes and the 

number of instructions in any corresponding algorithm. In this paper graphs will 

alwa~ys be assumed to be directed and acyclic. T~e fixed indegree property will not 

be assumed, except where so indicated. Note that by replacing each node by a binary 

fanin tree a graph can be made to have fanin two without more than doubling its size 

or destroying any flow properties relevant here. 

A labellin~ of a directed acyclic graph is a mapping of the nodes into the 

integers such that for each edge (~,~) the label of ~ is strictly greater than 

the label of u. If the total number of nodes on the longest directed path in the 

graph is d then d is the ~ of the graph. It is easily verified that if 

each node is labelled by the total number of nodes on the longest directed path that 

terminates at it, then this constitutes a consistent labelling using only the integers 

1,2,°..,d . 
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3. Shifting Graphs 

Connection networks are graphs in which certain sets of specified input-output 

connections can be realised. For simplicity we consider the canonical case of a 

directed acyclie graph G with n input nodes ao,a~,..°,an~ and n output nodes 

b@,bl,...,bnq° If ~ is a permutation mapping of the integers (l,...,n} then G 

implements ~ iff there are n mutually node disjoint paths joining the n pairs 

(ai,bo(i) I O ~ i < n}. It is well-known that any graph that implements all n~ 

different permutations has to be of size at least nlog2n = log2(n~) simply because 

there are n~ different sets of paths to be realised. Furthermore this order of 

size (in fact 6nlog3n + O(n) [2,18] ) is achievable. It is perhaps remarkable 

that even to implement just the n distinct circular shifts 

{~i I ~i(J) = j+i mod n ; 0 ~ i ~ n - i} a graph of size 3nlog3n is necessary. 

This follows from the following special case of a result proved in [18] : 

Theorem 3.1 If Ol,...,Os are any permutations such that for all i,j,k(i ¢ j) 

oi(k) # oj(k) then any graph that implements all the s permutations has to have 

size at least 3nlog3s. D 

In fact two distinct constructions of size 3nlog3n + O(n) are known for such shift- 

i_~ graphs [18,23]. 

The above theorem has been used to prove superlinear lower bounds on the complex- 

ity of problems for various restricted models of computation. The restriction 

necessary is that the algorithm be conservative or be treatable as such. Conservat- 

ism as defined in [18,23] means that the input elements of the algorithm are atomic 

unchangeable elements that can be compared or copied in the course of the algorithm, 

but not used to synthesize new elements or transmuted in any way. This notion is a 

generic one that has to be made precise for each model of computation. 

Applications of shifting graphs to proving lower bounds for various merging, 

shifting and pattern matching problems can be found in [18]. In each case the lower 

bound is closely matched by an O(nlog n) upper bound and is either new or related to 

results proved elsewhere by more specialized arguments. 

Unfortunately it appears that connection networks cannot be applied to unrestricted 

models (interpreted here to mean models (A), (B) and (C)). The presence of negation 

or subtraction allows for pairs of equivalent algorithms of the following genre: 

(i) b I := a I ; b 2 := a 2 ; 

(ii) x := a I + a 2 ; b I := x - a 2 ; b 2 := x - a I ; 

In the graph of the second algorithm the identity permutation is not implemented, 

contrary to its semantics. 
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4. Superconcentrators 

Concentration networks are graphs in which specified sets of input nodes have 

to be connected to specified sets of output nodes, but it is immaterial which part- 

icular pairs of nodes in these sets are connected. Various kinds of concentration 

networks have been studied ~16]. Superconcentrators were defined in [23] to have 

the most restrictive property of this kind. 

Definition A directed acyelic graph with distinguished input nodes al,...a n 

and output nodes bl~...,b n is an n_-su~erconcentrator iff for all r (i ~ r ~ n) 

for all sets A of r distinct input nodes and all sets B of r distinct output nodes, 

there are r mutually node-disjoint paths going from nodes in A to nodes in B. 

It has been shown for many computational problems that the graph of any algorithm 

for computing it must be a superconeentrator, or have some weaker property of a 

similar nature. For example for convolution a superconeentrator is neeessary~ for 

the discrete Fourier transform a hyperconcentrator, and for matrix multiplication 

in a ring, or for (^,V)-Boolean matrix multiplication, a matrix concentrator (see E23 ] 

for definitions and proofs.) Furthermore~ for at least one restricted model of 

computation, the BRAM ~23 ] , it can be shown that the graphs associated with these 

properties have to be of size knlog n and hence the algorithms must have this com- 

plexity. (A BRAN is a random access machine in which unit cost is assigned to 

communication between locations whose addresses differ by a power of two, and inputs 

are in consecutive locations.) 

Contrary to expectation, however, it has been also shown ~23] that superconcen- 

~rators do not account for superlinear complexity in unrestricted algorithms: 

Theorem 4.1 ~k Vn there is an n-supereoneentrator of size kn. 

An improvement on the original construction found by Pippenger [17] has size 39n, 

constant indegree and outdegree, and depth O(log n). 

Although this is a negative result for lower bounds, it is also a positive result 

about the surprising richness of connections possible in small graphs. As hoped for, 

this has led to a surprising result due to V.strassen, about the existence of new 

fast algorithms, and has refuted a previously plausible conjecture: 

Theorem 4.2 ~k Vn there is an n x n integer matri~ A in which all minors of all 

sizes are nonsingular~ but such that the n linear forms ~4_ ( where ~ is the 

col~nn vector (Xl,...~xn)) can be computed together in kn time. 

Proof Consider an n-superconcentrator of linear size with fanin two. Give the nodes 

unique labels in some consistent way. Construct a linear program by identifying the 

n inputs with Xl,.o.~X n respectively, and defining the linear combination fk,~(u,v) 

at each node in the order of the labels as follows: Choose ~ and B to have the 

property that "¥r (i ~ r ~ n), for all sets { Wl~...,Wr_ I} of functions computed 

at smaller labels, for all sets X of r components of { Xl,...,x ~ , if 
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{U,Wl,... , Wr. I} and (V,Wl,... , Wr_ I} when restricted to X are both linearly 

independent then so is {~u + ~v, Wl,..., Wr_ I) over the same set of components". 

Clearly for each combination of r, {Wl,...,Wr_ I} and X at most one ratio ~:~ will 

be forbidden. Hence we can always find integral values of k and ~ at each node. 

For any r × r minor B of A consider a set of r node disjoint paths from the 

r inputs X corresponding to the columns of B to the outputs corresponding to the 

rows of B. It is easily verified by induction that the r x r matrix corresponding 

to the restriction to X of the r linear forms computed at "parallel" nodes on the 

r disjoint paths as these are traced in order of their labels, is always nonsingular.0 

We note that much yet remains to be understood about superconcentrators: Both 

of the known constructions [23,17] use as building blocks certain bipartite graphs, 

called "partial concentrators" in [16], for which no completely constructive construct- 

ion is known ~0,16]. Little is known about what restrictions have to be imposed on 

graphs to ensure that superconcentrators be of superlinear size. The one such res- 

triction known is the one corresponding to BRAhMs [23]. In the other direction the 

two restrictions considered in the next chapter (of 0(log n) depth, and the "series- 

parallel" property), the linear construction in [17] has both. Yet another relevant 

restriction is the one corresponding to oblivous TM computations, called TM-graphs 

in [15]. W. Paul and R. Tarjan have raised the question as to whether there exist 

linear size TM-graphs that are superconcentrators. 

5. Graphs that are Dense in Lon~ Paths 

We come to a different graph property that has been suspected of accounting for 

the complexity of algorithms. The first concrete evidence that it does so in at 

least a limited sense will be explained in the next section. The property has been 

studied previously by Erdos, Graham and Szemeredi [5] but only for parameters other 

than the ones we require. Here we shall prove the sought after nonlinear bounds for 

the relevant parameters for two distinct restricted classes of graphs: (i) shallow 

graphs (i.e. depth O(log n)), and (ii) series-parallel graphs, defined later. 

Definition A directed acyclic graph G has the R(n,m) property iff whichever set 

of n edges are removed from G, some directed path of m edges remains in G. Let 

S(n,m,d) be the size of the smallest graph of depth at most d with the R(n,m) 

property. 

The following generalizes a corresponding result in [5] and simplifies the proof. 

(An intermediate form was stated in [241o) 

Theorem 5.1 S(n,m,d) > (nlog2d)/(log2(d/m)) 

assuming for simplicity that m and d are exact powers of 2o 

Proof Consider any graph with q edges and depth d and comsider a labelling of 

it with {O~l,...,d-l}. Let X i (i = 1,2,...,log2d ) be the set of edges between 

pairs of labels x and y such that the most significant bit in which their binary 
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representations differ is the i th (from the left). If X. is removed from the 
I 

graph then we can v a l i d l y  r e l a b e l  the nodes by O , l , . . . ~ ( d / 2 ) - l ,  by simply d e l e t i n g  

the i th bits in all the old labels. Consequently if any s ~ log2d of the X~sl 

are removed a graph of  depth d/2 s remains. 

The union of the s smallest of the classes {y~ ..... ~og2d } contains at most 

qs/log2d edges. Hence we conclude that 

S(qs/log2d , d/2 s , d) > q 

or S(n,m~d) > (nlog2d)/log2(d/m). 

Corollary 5.2 For any k > 0 the depth of any graph with q S (nlog2d)/k 

reduced to d/2 k by removing some set of n edges. 

(Theorems 2 and 3 in [5] correspond to the cases d 4 nlog2n, k = loglog2n 

k = constant.) 

that 

can be 

constants 

n/c2d 

and d = n, 

then the depth can be reduced to at most 

5.1 Shailow Graphs 

The application of Corollary 5.2 in §6 is the case 

following irmtance of it is applicable directly: 

dl- e . 

m < log2n , to which the 

f 

Corollary 7.3_ The depth of any graph with d = c(log2n) c can be reduced to 

d/loglog n by removing some set of n edges, if q < (nloglog n)/logloglog n. 

~ypical applications are d = O(log n) and d = O((log n)logloglog n)). Note that 

the practical significance of depth O(log n), besides its obvious optimality, is 

that for numerous problems the most efficient algorithms known achieve this depth 

(e.g. discrete Fourier transform, Strassen's matrix multiplication algoritDm~[l ] .) 

5.2 Series-Parallel Graphs 

This is roughly the class of graphs that can be constructed recursively from 

subgraphs placed in series or parallel. Nearly all known efficient constructions of 

circuits have this property, as is also the case for relevant graph constructions 

(e.g. superconcentrators [23,17] , imiversal graphs [24], and graphs dense in long 

paths as given in [15]~ though not in [5]. ) 

Definition A graph with designated sets of input nodes and of output nodes is an 

sp-graph iff there is a labelling of it such that all inputs have one label, all 

outputs another label~ and for all pairs of edges (i,j) and (k,m) it is the case 

When 

k = clog 2 

size n/s 

k is not a constant optimality is unknown. In the extreme case of 

d the corollary says only that if n edges are removed from a graph of 

That Corollary 5.2 is optimal to within constant factors for all d , provided 

k is a constant~ follows from Theorem I in [5]', which states that for some 

Cl~C 2 > 0 ~ ~(clp ,clP , p) ~ c2Plog2p. Placing in parallel 

such bad graphs for p = d gives the result for all d. 
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that (i - k)(m- j) ~0 . 

Definition An sp-graph has the R'(n,m) property iff whichever set of n edges are 

removed some directed path of at least m edges remains from an input to an output. 

Ssp(n,m) is the size of the smallest sp-graph with the R'(n,m) property. 

Theorem 5.4 For some constant c > 0 

Ssp(n,m) ~ cnloglog2m. 

Proof We perform "induction on edges" in the manner of [13,7]. We assume sp-graphs 

with designated input arcs (directed out of nodes of indegree zero and outdegree one) 

and output arcs (directed into nodes of indegree one and outdegree zero). Only paths 

that go from an input arc to an output arc will be counted. In the induction the 

input arcs and output arcs are not counted in the size of the graph or of the paths. 

Consider a graph G with the R'(n,m) property. Consider a labelling of it 

satisfying the sp-eondition and find the smallest label i such that the following 

has the R'(n/2,(m-2)/2) property: the graph G 1 consisting of all the nodes 

labelled less than i and all connections between them, with the original input arcs 

to this subgraph as input arcs, and all arcs directed out of these nodes to the out- 

side as output arcs. By the choice of i if a certain set of n/2 arcs are removed 

from O 1 then no path longer than (m-2)/2 will remain. Clearly the complementary 

graph G 2 on all the nodes labelled greater than i must also have the 

R'(n/2,(m-2)/2) property, for otherwise by removing some n/2 edges from each of 

G 1 and G 2 we would have no path longer than (m - 2)/2 + 2 + (m - 2)/2 - 1 = m - i. 

The sum of the sizes of O 1 and O 2 will be the size of G minus r , the total 

number of edges between some node with label i and some internal node of G 1 or G 2 

and between some internal node of G 1 and one of G 2. Hence 

Ssp(n,m) ~ 2Ssp(n/2,(m-2)/2) + r. (i) 

The special property of sp-graphs that we exploit is that at least one of the 

following must hold in G: (i) there are no input arcs directed into nodes with 

label greater than i , (ii) there are no output arcs directed out of nodes with 

label less than i . Without loss of generality we shall assume the former. Then 

if the r connections are removed then no remaining input-output path in G involves 

any node in G 2. Hence if r ~ n/4 we have that G I has the R'(3n/4,m) property. 

Since it is clear that Ssp(3n/4,m) ~ Ssp(n/2~m) + n/4 it follows that 

ssp(n,m) ~ 2ssp(nl2,(m-2)/2) + nld. 
In the alternative case of r ~ n/4 the same inequality is immediate from (i). 

Solving this recurrence gives the claimed bound. [] 

Problem i Can Corollary 5.2 be improved? The particularly relevant question is to 

settle whether S(n,log2n ,~ ) is linear in n or not. [N.B. We have shown that 

no o(nloglog2n ) construction can be sp.] 
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Problem 2 How can deep graphs, and graphs without the sp-property be exploited in 

algorithms and circuits to obtain substantial reductions in total complexity? 

6. Grates and Rigidit~ 

We finally discuss a pair of notions introduced in [25], which offer a proof 

that nontrivial complexity measures for unrestricted arithmetic programs can be 

related to natural non-computational properties of the function to be computed. We 

emphasize that the results are weak in two senses: (i) the lower bounds we prove 

are on the combination of size and depth achievable simultaneously by any algorithm 

(i.e. that simultaneous size O(n) and depth O(log n) is impossible,) and (ii) 

while we can prove for our non-computational property that "most" sets of linear forms 

possess them, we have not been able to prove it for any specific natural problem. 

We believe, however, that further progress on both issues is possible. In particular 

it appears plausible to conjecture that these properties, (which are more severe than 

the R(n,log2n) property) do guarantee superlinear size. 

We shall assume now that all matrices are n × n and have elements drawn from 

a field F. 

Definition The densit~ of a matrix A is the number of nonzero entries in A (and is 

denoted by dens(A)). 

Definition The rigidity of a matrix A is the function 

RA(r) : {i ..... n} + {0,i ..... n 2} 

defined by 

RA(r) = min{i I ~B with dens(B) = i and rank(A + B) $ r}. 

From elementary matrix properties it is easy to verify that for any F and any 

matrix A, RA(r) g (n - r) 2 for each r . As we shall see later (Theorem 6.4) 

this maximal rigidity is indeed achieved by "most" matrices. 

The significance of the notion of rigidity comes from the fact that it can be 

related intimately to the following graph-theoretic property. 

Definition A directed acyclic graph G is an f_(r)-~rate iff for some subsets 

{al,...,as} and {bl,...,b t} of its nodes it has the property that "if any r nodes 

and adjacent edges are removed from G then for at least f(r) of the st distinct 

pairs (ai,b ~) there remains a directed path from a i to bj in G." 

The function f(r) will be specified on a subset of the integers and will be assumed 

to be zero for all other values of r. The slightly weaker restriction corresponding 

to specific chosen values of s and t will be called an (f(r),s,t)-grate. 

The next theorem shows that a typical case of interest for linear forms is the 

((n-r)2,n,n)-grate. The smallest graphs known with such properties are shifting 

networks which are of size ~ 3nlog3n and are in fact (n(n-r),n,n)-grates 
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Theorem 6.1 (i) The graph of any linear program for computing a set of linear forms 

Ax_ is an RA(r)-grate. (ii) Conversely, if for some r f(r) > RA(r) then there 

exists a linear program P for computing Ax whose graph is not an f(r)-grate (w.r.t. 

the natural inputs and outputs). 

. and = with the inputs Xl, ..,x n Proof (i) Let s = t n and identify al, .... a n 

bl,...,b n with the nodes at which the outputs are computed. We assume for the sake 

of contradiction that for some r (1 ~ r ~ n) if a certain set of r nodes are 

removed then fewer than RA(r) input-output pairs remain connected. This implies 

that if the multipliers X and ~ at these r nodes are changed to zero then the 

matrix B of the linear forms computed by the modified program has density less than 

RA(r). However, the rows of B differ from the corresponding ones of A only by 

linear combinations of the forms eomp~ted by the original program at the removed nodes. 

(To verify this, for each output expand the sub-programthat computes it into a tree 

structure. Let N be the set of nodes in the tree corresponding to the (possibly 

repeated) occurrences of the removed nodes. Consider the contribution to the output 

of all the nodes in N that are not separated from the root by other nodes in N.) 

It follows that A = B + X for some n x n matrix X of rank r and hence, by the 

definition of rigidity, that RA(r) ~ dens(B) < RA(r), a contradiction. 

(ii) Suppose that for some given r f(r) > RA(r). Consider a matrix C of rank r 

such that dens(A-C) = RA(r ). Let P first compute the following n + r forms 

in the obvious way as n + r separate computations: (a) a set X of r linearly 

independent forms from C~, and (b) (A - C)~. The n outputs Ax_ are then com- 

puted as linear combinations of the above. Clearly if the r nodes corresponding 

to X are removed then the remaining graph contains n disjoint trees~ with the 

outputs as roots and with RA(r) < f(r) input-output connections. 

The above theorem motivates two complexes of problems, one to do with the size 

of graphs and the other with the rigidity of natural functions. Positive solutions 

to Problems 3 and 4 below would give the desired superlinear lower bounds on the 

complexity of natural sets of linear forms. An alternative result to aim for would 

be bilinear forms (e.g. matrix multiplication) which would require solutions to 

problems 3 and 5. 

The main evidence we have that the above theorem does provide a reduction of a 

nontrivial computational property to a noncomputational problem is the conjunction 

of Corollary 6.3 and Theorem 6.4 below. 

Proposition 6.2 Ws > 0, Vc >0, Vk> 0 and for all sufficiently large n, any 

f(r)-grate of indegree two and depth klog2n with f(n) > cn l+C has siz:e at least 

(nloglog n)/logloglog n. 

Proof Assume the contrary. By corollary 5.3 some set of n nodes can be removed 

from any graph of size (nloglog n)/logloglog n and depth klog n so as to leave 

no path longer than (klog n)/loglog n. Hence each output will be connected to at 
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most nk/loglog n = o'(n ~) inputs after the deletions. This implies that the graph 

is not an f(r)-grate for any sufficiently large n , which is a contradiction. 

Corollary 6.3 Let AI,A2,... be an infinite family where A n is an n × n real 

matrix and for some c,s > O~ R A (n/2) ~ cn l+C Then there does not exist a family 

of straight-line programs for thencorresponding sets of linear forms that for some 

Cl,C 2 > O~ (i) achieve size cln and depth c21og n simultaneously for all n, or 

(ii) are series-parallel and of size cln for all n. 

Proof(i~mmediate from Theorem 6.1(i), Proposition 6.2, and the fact that the standard 

translation from straight-line programs to linear programs changes both the size amd 

depth by only a constant factor. (ii) Follows similarly from Theorem 5.4. 

Theorem 6.4 (i) For F infinite, Vn ~n × n matrix A such that RA(r ) = (n-r) 2. 

(ii) For F finite with c elements, ¥n ~ n x n matrix A such that for 

all r < n - /(2n.logc2 + log2n ) , 

RA(r) 5 ((n-r) 2 -2n lOgc2 - log2n)/(2 logcn + i). 

Proof Define a mask ~ to be any subset of s pairs from the set of pairs 

{(i,j) Ii ~ i,j ~ n}. A minor T is any pair of subsets of {i I i ~ i ~ n} , 

both of size t. Define M(~,T) to be the set of all n × n matrices A with the 

property that "~B such that (i) all the non-zero entries of B are indexed by ~ , 

(ii) rank (A+B) = t, and (iii) T specifies one of the minors of C = A+B of 

maximal rank t in C." 

Without loss of generality we shall assume that ~ is in the top left corner. 

We shall denote an n x n matrix X generically by 

t Xll x12 / 
X21 X22 

where XII is t × to 

Consider the set of all matrices of rank t that have a minor of maximal rank 

in the top left corner. Clearly there is a fixed set {fk'} of (n-t) 2 rational 

functions such that for any C in this set of matrices the entries of C22 are given 

by these functions in terms of the entries of CII,C12 and C21. But each element 

of M(~,T) differs from sOme element of this class by only an additive B. It 

follows that there is a fixed set {fk } of n 2 rational functions such that the 

entries of any A 6 M(%T) are given by these functions in terms of (n 2 -(n-t) 2 + s) 

arguments (i.e. the entries of CII,C12,C21 and the ngn-zero entries of B)° Hence 

each element of {M(o,T)IO,T } is the image of F 2tn-t-+s under some rational mapping 

into F n2 

(i) Hence for any r all the matrices that can be reduced to rank r by adding 
a " 2 2 

matrlx of denslty (n-r) -i belon~ to the union of the images in F n of a finite 

number of rational mappings from F m -i • But if F is infinite the result follows 
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since for any u the finite union of the images of F u under rational mappings into 

F u+l is properly contained in F u+l . (This last fact can be established by first 

showing that if fl,...~fu+l are rational functions of Xl,...,x u then the f's 

are algebraically dependent. (A counting argument in the style of [3] p.442 suffices 

if applied to the numerators of these functions when put over a common denominator). 

It then follows that the points in any finite union of such images are the roots of 

a non-trivial polynomial, and therefore cannot fiil Fn2). 

(ii) If F has c < ~ elements then the number of elements in M(G,T) is bounded 
F2tn-t2+s, 2tn-t 2 + s 

by the size of i.e. e For fixed s and t the number of 

possible choices of ~ is 

n2C ~ 22s log2n , 
s 

and of T is 

(net)2 < 22n. 

Hence for fixed s and t the number of matrices in the union of 

~, T of these sizes is bounded by 

c2tn-t 2 + s + 2s logcn + 2n lOgc2 

It follows that for any t < n - /(2n logc2 + log2n) , if 

0 ~ s < ((n-t) 2 -2n lOgc2 - logcn)/(l + 2 logcn) 

then the number of such matrices is less than 

2 2 
n - l°gcn c n /n. c = 

Hence the union of all these matrices over all values of t 

M(~,T) over all 

2 
will not fill F n 

Unfortunately we do not know of any explicit characterization of matrices of 

high rigidity. Indeed we have the following matrix-theoretic result that there are 

integer matrices in which all minors of all sizes are nonsingular but whose rank can 

be reduced to O(n) by changing a mere O(n l+s) elements: 

Proposition 6.5 For each n there is an n x n matrix A in which all minors of 

all sizes are nonsingular but 

i + 0(i/loglog n) ~A((nlogloglog n)/loglog n) ~ n 

Proof Let A be the matrix of Theorem 4.2 constructed from a superconcentrator of 

size O(n) and depth O(log n). Applying Corollary 5.3 to the graph of this algor- 

ithm in the manner of Proposition 6.2 gives that for r = (nlog!oglog n)/loglog n 
f(r) ~ n I + 0(i/loglog n) 

The result then follows from Theorem 6.1(i) . 

We note that although grates seem more restrictive than the corresponding 

R(n, 0(log n)) graphs, Proposition 6°2 exploits them only via this weakening corres- 

pondence. There therefore remains a hope that much better bounds are provable for 

them. 
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Problem 3 Prove a lower bound superlinear in n on the size of f(r)-grates for 

appropriately "nonlinear" f(r). One candidate is. ~ f(r) = (n-r) 2 for r = l,...,n. 

A weaker candidate is: f(r) = kn 2 when r = n and f(r) = 0 when r ~ n. (Alter- 

natively prove a linear upper bound noting that no such construction can be "series- 

parallel" or "shallow". ) 

Problem 4 For some natural n × n matrix A prove that RA(r) is large. A bound 

of k(n - r) 2 is one aim. A weaker aim would be one on the value of RA(n/2) alone, 

of kn2,kn I+~ , or some other superlinear function in n . Natural candidates for 

A are: (i) for the integers some Vandermonde matrix (i.e. A.. = z# -I for distinct 
Ij l 

zl,z2,...Zn), (ii) for the complex n~mbers the discrete Fourier transform matrix 

(i e A w (~-l)(j-l) th . . . .  where w ms an n prmmmtlve root of unmty), and (iii) for 
m0 

GF(2) the 0-i matrix associated with a finite pro~ective plane. 

Problem 5 It is known that for computing sets of billnear ~ forms (eog. matrix multi- 

plication, convolution) bilinear programs are optimal to within a constant factor 

~3,26] . Prove that the graph of any bilinear program for a natural set of bilinear 

forms is an f(r)-grate for such values of f(r) as in Problem 3. 

7o Conclusion 

We have surveyed one approach to understanding complexity issues for certain 

easily computable natural functions. Shifting graphs have been seen to account 

accurately and in a unified way for the superlinear complexity of several problems for 

various restricted models of computation. To attack "unrestricted" models (in the 

present context combinational circuits or straight-line arithmetic programs$ a 

first attempt, through superconcentrators, fails to provide any lower bounds although 

it does give counter-examples to alternative approaches. The notion of rigidity, 

however, does offer for the first time a reduction of relevant computational questions 

to noncomputional properties. The "reduction" consists of the conjunction of 

Corollary 6.3 and Theorem 6.4 which show that "for most sets of linear forms 

over the reals the stated algebraic and combinatorial reasons account for the fact 

that they cannot be computed in linear time and depth 0(log n) simultaneously." 

We have outlined some problem areas which our preliminary results raise, and feel 

that further progress on most of these is humanly feasible. We would be interested 

in alternative approaches also. 

Problem 6 Propose reductions of relevant complexity issues to noncomputational 

properties, that are more promising or tractable than the ones above. 
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