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1 Introduction

In cryptography, a commitment scheme or a bit commitment scheme is a method that allows a user
to commit to a value while keeping it hidden, and while preserving the user’s ability to reveal the
committed value later. A useful way to visualize a commitment scheme is to think of the sender
as putting the value in a locked box, and giving the box to the receiver. The value in the box is
hidden from the receiver, who cannot open the lock (without the help of the sender), but since the
receiver has the box, the value inside cannot be changed. Commitment schemes are important to
a variety of cryptographic protocols, especially zero-knowledge proofs and secure computation. We
will consider the naive case of commitment to either 0 or 1.

In order to come up with a commitment scheme C, the scheme should have the following two
properties:

• Hiding: It should be hard to distinguish between commitment to 0 and commitment to 1 :

C(0) ≈ C(1)

• Binding: There should be no way for a person who commits to one bit, to claim that he has
committed to another value later:

∀C @ (or just hard to find) r0, r1 such that C = Cr0(0) = Cr1(1)

We can define both statistical and computational definition for both of the hiding and biding
properties. The commitment scheme is statistically hiding if the statistical distance of C(0) and
C(1) is small and is computationally hiding if C(0) is computationally indistinguishable from C(1).

For binding, on the other hand, the scheme is statistically binding if @ r0, r1 such that Cr0(0) =
Cr1(1) and is computationally binding if a polynomial adversary cannot find r0, r1 such that
Cr0(0) = Cr1(1). As C(0, Un), C(1, Un) are disjoint, there exists no commitment scheme with
both statistical hiding and statistical binding properties.

It is easy to come up with a scheme that is statistically binding and computationally hiding from
pseudorandom generators, and as we know using one way functions we can build pseudorandom
generators. So suppose we have the following PRG: G : {0, 1}n → {0, 1}3n. Then the following
protocol is the desired commitment scheme:

1. Alice chooses S ← Un, Bob chooses R← Un and sends R to Alice

2. Alice: If wants to commits to 0 sends G(S) to Bob, otherwise sends G(S)⊕R to Bob.

We have G(S) ≈ U3n ≈ U3n⊕ R ≈ G(S)⊕ R. So the scheme is computationally hiding. Also
by the union bound:

Pr[∃S, S′ : G(S) = G(S′)⊕R] ≤ 22n.2−3n = 2−n

So the scheme is statistically binding. In fact, in many cases such as zero knowledge proofs, we
want out scheme to be statistically binding and computationally hiding.
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2 Coin tossing to the well protocol

In order to come up with the desired protocol, with shall define the notion of collision resistant
hash functions. A family of hash functions H is a set of collision resistant hash functions if ∀
computational adversary A and negligible ε we have:

Pr
h≈H

[A(h) = (x, x′) such that h(x) = h(x′)] < ε

Now suppose Alice wants to commit to a bit b. The protocol will be:

1. Bob chooses h from H uniformly at random and sends h to Alice.

2. Alice chooses x , r independently at random from Un and sends r, h(x), 〈x, r〉 ⊕ b as the
commitment to b.

Claim 0.1. x has min entropy ≥ n
2

The binding property is immediate. If Alice wants to pretend that she had committed to some
other value, she has to come up with a x′ 6= x such that h(x′) = h(x), which is impossible by the
CR property of the hash function.

For Hiding suppose BAD = {y′ : |h−1(y′)| ≤ 2
n
4 }. Then Pr[y ∈ BAD] ≤ 2

n
2 .2

n
4 = 20.75n which

is a negligible fraction of 2n, so we can assume x 6∈ BAD which in this case x will have min entropy
at least ≥ n

4 and so we can use any strong extractor rather 〈r, x〉. Hence any scheme of the form
r, h(x), Extr(x)⊕ r can be used.

This protocol is called coin tossing to the well! However, we are interested to have a protocol
that is not based on the collision resistance property of the hash functions. In next sections we will
try to construct such a protocol.

3 Commitment from PRP

Suppose f : {0, 1}n → {0, 1}n is a one-way permutation and h : {0, 1}n → {0, 1}n−1 is CRH. First
of all, we will show by a counter example that h(f(x)) is not CRH in general. Consider the case
that h is universal hash function (a, b are chosen uniformly at random).

Counter example: ∃f : h(f(x)) is not CRH:

h(x) = ax+ b over GF(2n)

∀a,∃A : h(x) = Ax+ b over GF(2)

Assume that if the first n
10 coordinates of y or the last n

10 coordinates of y are 0 then it is easy
to find f−1(y). Then it is possible to attack Af(x) + b : (A maps n bits to n-1 bits) We should find
y, y′ such that.

y 6= y′, Ay + b = Ay′ + b (1)
y1 = ... = y n

10
= 0 (2)

y′n− n
10

+1 = ... = y′n = 0 (3)

So we can pick a z ∈ Kern(A) and partition it to y, y′ with the above conditions. Then we can
simply compute x, x′ from y, y′ and so we have a collision! However there exits functions such that
h(f(x)) is CRH.
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Now we will see how to design a coin to the well protocol from functions above. Suppose h1, ...hn
are linearly independent and

h1 = 1$$...$ (4)
h2 = 01$$...$ (5)

... (6)
hn−1 = 0...1$ (7)

Then the following interactive protocol is a protocol to commit to b:

1. Alice samples x uniformly at random and computes y = f(x)

2. Bob sends h1 to Alice, Alice computes b1 ⊕ 〈h1, y〉 and sends it to Bob

3. Bob sends h2 to Alice, Alice computes b2 ⊕ 〈h2, y〉 and sends it to Bob

4. ...

5. Bob sends hn−1 to Alice, Alice computes bn−1 ⊕ 〈hn−1, y〉 and sends it to Bob

And in order to reveal, Alice simply sends x, y = f(x) to Bob. Bob checks the validity and computes
b. The hiding property is obtained since each round gives Bob information about just one bit of b,
and by PRP property. Now we will prove the binding property:

Theorem 1. If ∃S∗ such that with probability ε inverts both y0, y1 then ∃ I that can invert a one
way permutation with probability ( εn)100

Remark This is false if we give H to S∗. The blackbox construction of the protocol needs n
logn

rounds.
In order to invert y, we need to choose h1, ..., hn−k iteratively such that y is consistent with

h1, ...hn−1.1

So we choose h1, ...hn−k iteratively, and at each iteration we resample until we get right sample
with respect to what the sender gives. In other words, we choose h1, ...hn−k and then we repeat-
edly resample y until it is consistent, then we choose hn−k, ..., hn−1 at random and we hope that
S∗(h1, ..., hn−1) inverts y. The heart of the analysis is as follow:

S∗ runs the protocol, with probability ε it gives f(x0) = y, f(x1) = y. So sometimes the output
is what we desire. Suppose we run the protocol until we are successful (in expectation 2(n-1)
rounds), which means:2

DI : y ≈ Un
h1, ...hn−k ≈ C(y)

The following two lemmas together imply the theorem:

Lemma 2. Pry,h1,...hn−k≈DS
[S∗(h1, ...hn) inverts y] ≥ ε

1002k and moreover ∀Z : Pr(h,y)≈DS∗ [(h, y) ∈
Z] ≤ 2−0.6k.

1∀h ∈ {h1, ..., hn−k} : S∗(h) = y where h(y) = z.
2We will denote the consistency by C.
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Proof. First we have the following:

Pr[S∗(h, h′) inverts (y0, y1) ∈ C(h0, h1)] ≥ ε

Pr[S∗(h, h′) inverts (y0, y1) ∈ Ch] ≥ ε

Pr
h,h′≈H,y≈(h)

[S∗(h, h′) inverts y] ≥ ε

2k

Now, let Zh = {y | (h, y) ∈ Z}. Then with probability at least 1 − ε
100 we have: Pry≈Ch[Zh] ≤

100
ε 2−0.6k ≤ 2−0.55k. So we get |Zh| ≤ 2k2−0.55k ≤ 20.45k And therefore Pr[∃y0, y1 ∈ Zh : h(y0) =
h(y1)] ≤ |Zh|22−k ≤ 2−0.1k ≤ ε

2 . Hence with probability ε at least one of the y0 or y1 is not in
Zh.

Lemma 3. DI is at most (20.6k, 10)−skewed with respect to DS meaning that except with probability
2−0.6k if an event happens over DS with probability ε, then the corresponding event happens over
DI with probability ε

10 .

Proof. Let D0 = DS∗ , D1, ..., Dn−k = DI . We will prove this lemma by a hybrid argument with
skews :

Pi(h, y) ≤ (1 +
1
n

)Pi+1(h, y)

So at the end P1 is incremented by a factor e.
At each step i:

• Let Di : sample h1, ..., hn−k−1 at random from H.

• take y ≈ C(h1, ..., hn−k−1)

• sample hn−k from H consistent with y.

So how much skew are we introducing? If we consider the consistency graph, in Di−1 we choose y
from left degrees at random and then we sample h to be consistent with that y. In Di however,
we first choose h and then we choose a y to be consistent with that h. This is equivalent to first
choosing y according to the distribution of the weights of right nodes, and then choosing h uniformly
from the neighbors of y. Then we have the following claim:

Claim 3.1. Pry[DEG(y) ≥ (1 + 1
n2 )|H|] ≤ 2−0.99k.

Proof: Define: Xh = 1(〈y, h〉 = bh), then:

Pr[|
∑

Xh −
|H|
2
| ≥ 1

n

|H|
2

] ≤ 4n
|H|
≤ 10n

2k
≤ 2−0.99k

This is the chebyshev’s inequality and we can use it because of the pairwise independence, which
completes the proof.

So far we saw the interactive hashing protocol using one-way permutation. Now we only sketch
very roughly how it generalizes to getting the same thing using one-way function.

For the case that f is a 2k to 1 regular one-way function, if we look at f(x), h, h(x) where
|h(x)| = k and h is pairwise independent, what we get is “almost” one to one and behaves like a
one-way permutation. The first try for k for the general case could be log sec(f(x))

2 where sec(f(x)) =
|f−1(x)|. But there are two possibilities:
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1. k � log |f−1(x)|. In this case [f(x), h, h(x)] is not close to the uniform distribution. In this
case we get binding property, but not hiding.

2. k � log |f−1(x)|. In this case it is easy to invert the interactive hashing procedure. So we
get hiding property, but not the binding anymore.

One observation is that in the second case we still have some entropy left in x. So what we do is
running another interactive hashing procedure with h(x) of length n− k. They together determine
x and so at least one of them is binding. In addition one of them is hiding. Now if we choose k at
random with probability at least 1/n we guess correctly and we get:

• The first phase is binding.

• Both phases are hiding.

Moreover, we always have:

• One phase is binding.

• One phase is hiding.

This protocol is called 1
n -weak 2-phase commitment. Then we shall amplify 1/n to ≈ 1. As-

suming we have done this we still only have one phase which is binding, but we have fully hiding
property. The main tool used to handle this issue is universal one-way hash function which we saw
in previous session and we refer the reader for details to the references below.
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