Natural Scene Recognition:
From Humans to Computers
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A picture Is worth a thousand words.

--- Confucius
or Printers’ Ink Ad (1921)
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e To understand human visual intelligence
by via psychophysical and physiological
experiments

« To build intelligent visual algorithms for
machines and robots






S. Lumet, 1965



Potter, Biederman, etc. 1970s
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Biederman, Science, 1973



Thorpe, et al. Nature, 1996
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150 ms !

Thorpe, et al. Nature, 1996
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Delorme, et al. 1998



A feed-forward mechanism?

Categorical judgments,
decision making Simple visual forms,

edges, comers

To spinal cord
——160-220 ms

Thorpe, et al. Science, 2001



Feature
Integration

Theory

Treisman et al. 1980

Attentional
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Object
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Object
Recognition

Master Map
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Stimulus Pattern
(Visual Scene)



Visual Search:
find the green-vertical bar




Reaction Time

Conjunction of features m

Single feature

# of distractors
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peripheral task performance (%)

individual results
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Compare to seemingly simpler tasks
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Compare to seemingly simpler tasks
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Compare to seemingly simpler tasks
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Compare to seemingly simpler tasks
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Are animals special?







Without color...
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Fei-Fei et al. Vis. Cog., 2004












Fei-Fei et al. Vis. Cog., 2004






Effect of “meaningful” category

randomly rotated fixed rotation upright position

Target Distractor Target Distractor Target Distractor
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F.I.T. predicted...

Object
Perception

Object
Recognition

Attentional
Spotlight

Master Map
of Locations

B | Stimulus Pattern
(Visual Scene)




Object

Our data shows...

Object
Recognition

Attentional
Spotlight

Maps

Master Map
of Locations

Stimulus Pattern
(Visual Scene)

Li et al. 2002:; Fei-Fei et al. 2005



Rapid Perception of Natural Scenes
- Where/how does this happen?

Categorical judgments,
decision making Simple visual forms,

edges, comers

---------

e

To spinal cord
——160-220 ms

Thorpe, et al. Science, 2001
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< 2000 ms

= ==chance

beaches buildings forests highways industry mountains

6 AFC, N=4, errorbars: s.e.m.



Behavioral Performance

chance: 0.167

Viewed image category (ground truth)
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Subjects’ response
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PPA

. Parahippocampal Place Area
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Pattern Recognition

Select voxels
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Pattern Recognition

Support Vector Machine (SVM)

Input Space Feature Space

Statistical
Pattern Recognition
Algorithm

Gaussian Naive Bayes (GNB)

Neural Networks L




Experimental Setup (fMRI)

Im. #1 | Iim. #2 Im. #10
., ® °
. 16s o
fixation fixation fixation

olock | Highways [ )~ | Buildings | |, .. | Beaches

16 s 12's

* 6 blocks per run (all 6 categories)
e 12 runs for each subject
« Alternating runs feature upright or inverted images



Voxel Selection

Univariate Multiple Regression




Decoding Performance

I Whole brain (1000 voxels)
===chance

beaches buildings forests highways industry mountains

N =4 error bars: s.e.m.



Decoding Performance

= ==chance

beaches buildings forests highways industry mountains




Decoding Performance

I Whole brain (1000 voxels)
===chance

beaches buildings forests highways industry mountains

N =4 error bars: s.e.m.



chance: 0.167

Viewed image category (ground truth)

Decoding Performance

Classifier prediction
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Decoding Performance

I Whole brain (1000 voxels)
===chance

beaches buildings forests highways industry mountains

N =4 error bars: s.e.m.



Retinotopic Areas

I Whole brain (1000 voxels)
| |Retinotopic areas (1000 voxels)
-==chance

0.7
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beaches buildings forests  highways industry mountains

N =4 error bars: s.e.m.



Retinotopic Areas Excluded

I Whole brain (1000 voxels)

| |Retinotopic areas (1000 voxels)
I Retinotopy excluded (1000 voxels)
===chance

beaches buildings forests highways industry mountains

N =4 error bars: s.e.m.



Place Network (PPA + RSC)

I Whole brain (1000 voxels)

[ |Retinotopic areas (1000 voxels)
I Retinotopy excluded (1000 voxels)
Bl Place network (30-50 voxels)
-==chance

beaches Dbuildings forests higﬁways incijstry mountains

N =4 error bars: s.e.m.



500 ms  32-45ms 500ms <2000 ms

) l’ Ei VimRIg Y :;.'I""'.
: 500 ms 32-45 ms 500 ms < 2000 ms
—— Inverted images

Training: upright only;
Testing: upright & inverted blocks intermixed







et Scene inversion effect
- ==chance
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1.Feature detection and representation

extract
- Interest points
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1.Feature detection and representation
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2. Codewords dictionary formation
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frequency

3. Image representation
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frequency

3. Image representation

codewords




Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the
messages that ra W Our eyes.
For a long tig
image wag

sensory, brain,
visual, perception,
ffetinal, cerebral corte
eye, cell, optical
nerve, image
more comdz& Hubel, Wiesel

following they .
to the various \-‘ . '
Hubel and Wiesel T

demonstrate that the message abo?
image falling on the retina undergoes
wise analysis in a system of nerve cel
stored in columns. In this system each
has its specific function and is responsibld
a specific detail in the pattern of the retinal
image.

China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
a predicted 300/, ’

Jlexports, imports, US,
uan, bank, domestic,

R\ foreign, increase,
also needd, trade, value
demand so ™

country. Ching \ — '
yuan against the aCm

permitted it to trade within a narro
the US wants the yuan to be allowed
freely. However, Beijing has made it C
it will take its time and tread carefully bé
allowing the yuan to rise further in value.
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A Generative
Model

LDA: Blel, Ng, & Jordan. 2003

OO
B \__/

AN L 3.
| > — )
N N R

A 5] z W N

@
©
®




A Generative

Modol scene category

discrete variable: ¢ ~ P (C ‘77)
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A Generative

Model mixing parameter for

the latent topics

T~ p(ﬂ"C,@)
~ Dir (zlc, )

K
where Z r, =1
k =1

topic #13

topic #15

proportion of themes

topics



A Generative

Model topic label

@ c® | discrete variable:
z ~ p(zr)
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A Generative

Model patch label

@ c® | discrete variable:
X ~pxlz,p)
© 5@ .~ Mult x|z, B)
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A Generative

Model patch label
@ 1.®

expected value of B given ‘z=15’
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A Generative

Model learning
(m) C@ Find the ‘best’ 6 and B

éﬂ@ joint probability

p(x,2,7(6. .¢)= plaic, 0)11 plz, |2)p(x, 2., 5)

N

| e exact inference Is intractable

e use Variational Inference
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AGI\e/I”era“"e Variational Inference
odel

@ @\ Maximum Likelihood estimation (Minka 2000)
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Recognition
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Recognition

i

codewords dictionary
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model distance based on topic distribution
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Change blindness

Rensink, O’regan, Simon, etc.



Change blindness

- eyelab.msu.edu : : |

Rensink, O’regan, Simons, etc.



what DO we see In a glance?

Fei-Fei et al. JoV 2007






Stage |I: Collect Image Description

Please type your description
here:

--- lllustration of 1 Trial

An outdoor scene, | think. reminded me a
a city... like walkingin a park in new york
or something. there seemed to be trees

SUbJeCt types freely What II- ;';;]ntc:]: Lﬁi;ﬁi:&?n this large skyscraper
he/she saw in the image

time

Mask onset: t = PT

1 of 7 possible PT’s (msec):
27, 40, 53, 67, 80, 120, 500




PT =500ms

This is indoors. It's must be a rich person's
house.There are many paintings on the
wall. The largest painting might have a
fireplace beneath it.| think the largest

painting was that of a man standing erect.

The room is richly decorated and it looks
like one of the rooms in Mr. Darcy's house
in the A&E movie Pride and Prejudice.Or
maybe it more closely resembles one of
the rooms where the one of the rooms in
Hungtington's house (at the Huntington).

PT =27/ms

Couldn't see much; it was mostly dark
w/ some square things, maybe
furniture. (Subject: AM)

PT =40ms

This looked like an indoor shot. Saw
what looked like a large framed object

(a painting?) on a white background
(i.e., the wall). (Subject:RW)

PT=67ms

| saw the interior of a room in a house.
There was a picture to the right, that
was black, and possibly a table in the
center. |t seemed like a formal dining
room. (Subject: JB)

Fei-Fei et al. JoV 2007



( natural ) Gnanmada
1 —

L rural L urban
- desert - suburban
= forest L industrial
L water - skyline
- underwater = other, pool
. parking lot
L mountains
L sky
- field/open-space
= beach/bank/
shore

Response attributes??

= store
L household_room

animated
object

inanimated
object

( animal ) ( peolple ) ( natrral ) (manmade)

event shape

related related

1 —

L social - black/white patches
Interaction

| big appliances
(washer, etc.)

=other

. = sport game = rectangular/square/box
(exc. kitchen) portg 9 9
= kitchen R — L body of water = eating = traingular/pyramidal
= officen/classroom Lbody/figure |Fmountain/hill L performance [ elliptical/cylindrical
= technical environ L play L curved_shape/contour
Lgender/age kplant instrument —2Ndp
L dining/restaurant .. e
9 =ethnicity = specific plant | | |
= station/plaza/mall L appearance/ .distacexture : 2t | 56
- library etails (Sglr']aslssggcv)v‘ vehicle ) (building) (furniture) (sucture) ( other
. performance | | | J I J J ]
environ . ) s :
mland Bird marine = airplane/jet -ggﬁgmg =bed/futon =bridge  [=food
| | = boat Lchair/couch Lrail_track Fmusical instrument
L larger_animal specific_kind mammal/ = car/truck '(a?icsﬁ-?éﬂ‘e‘r 'deg(e/f]gﬁw =road =container/bin
(horse, elephant, etc.)| (exd.below) | larger_aquatic_life motorbike/ e ! "
L monkey/chimp atypical ones F fish g % =cabinet/dresser f=Other =computer
(penguin, - " .
L smaller_animal/pet oﬁricﬁ, etc) pother_aquatic_life [ train shelves kitchenware(dish, etc)
(dog, squirell, etc.) . . . .
2 . = other_vehicle =sink/toilet =banner/flag/sign
= specific_kind
(e.g.labrador) =television =painting/picture/mural

things that spin
(wheel, dial, fan)

Fei-Fei et al. JoV, 2007



Response No. 18 for Image No. 4

CATEGORY: SENSORY/SHAPES

Flease zelect one of "corect’! or “incarrect” for each checked description. Click "Mest:>" to continug

blackiwhite_patches [ described &
rectangularfsguarefbox [~ described E:
triangularfpyramidal [~ described &
ellipticalcylindrical{eg.round. blok) Iv - described incarrect

I described

curved_shapefcontourfeg.arc,'3

| could make out some kind of circular shapes near the bottom of the
picture. These reminded me of those round life preservers that are on
ships. There was also a man standing on top of some wooden
structure.

Mest >



lance?

sinag

What’

Average fixation time (one glance) 12-200ms




PT=107ms

This is outdoors. A black, furry dog

is running/walking towards the
right of the picture. His tail is in the
air and his mouth is open. Either

he had a ball in his mouth or he

was chasing after a ball. (Subject EC)

inside a house, like a living room,
with chairs and sofas and tables,
no ppl. (Subject HS)

What’s In a glance?

PT = 500ms

| saw a black dog carrying a gray
frisbee in the center of the
photograph.The dog was walking
near the ocean, with waves lapping
up on the shore. It seemed to be a
gray day out. (Subject JB)

A room full of musical instruments.
A piano in the foreground, a harp
behind that, a guitar hanging on the
wall (to the right). It looked like there
was also a window behind the harp,
and perhaps a bookcase on the left.
(Subject RW)

Fei-Fei et al. JoV, 2007



Scene level

B PT = 107
B PT = 500

0 Y.
o o

3103 UOIjeN|eA]

Fei-Fei et al. JoV, 2007



Object level

3105 UOjenens

Fei-Fei et al. JoV, 2007
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Evaluation Score

0.9

0.8

(Social) Events

B FT = 107
B FT = 500

social
interactions games

sports and

stage
performance

Fei-Fei et al. JoV, 2007



and Classifying

events by scene angi object recognition

scene: Lake

L.-J. Li & L. Fei-Fei ICCV 2007



scene pathway object pathway

L.-J. Li & L. Fei-Fei ICCV 2007



rowing




event: Badminton
o TAONOR Y

scene:Cmq uet court




scena: Mountain

event: Salling




bocce
badminton
polo

rowing
snowboarding
croquet
sailing

rockclimbing

Average Perf.=73.4%

02 a7 .05 .25

L.-J. Li & L. Fei-Fei ICCV 2007



#1:. natural scene categorization entails little
g attention

_ #2: decoding the neural representation of natural
o scene categories
ol == #3: what can we perceive within a glance of a
O um scene”?

#4. Bayesian graphical models for natural scene
categorization and event recognition




Thank you!

#1:. natural scene categorization entails little
g attention (Rufin VanRullen, Pietro Perona,
' Christof Koch)

#2: decoding the neural representation of natural
scene categories (Eamon Caddigan, Dirk
Wallther, Diane Beck)

#3: what can we perceive within a glance of a
scene? (Asha lyer, Pietro Perona, Christof Koch)

#4. Bayesian graphical models for natural scene
categorization and event recognition (Pietro
Perona, Li-Jia Li)
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