Object Recognition: the Case for 2D Multiple Views

C. Andrew Burlingame

COS594B: Vision
February 25, 2008

Elegant Geons Don’t Fit the Data

- Geon model predicts no systematic affect of viewpoint.
- Reaction time (RT) and error rates (ER) both affected by viewpoint for certain object types.

CANONICAL

NON-CANONICAL

Inconsistent Results

- Little effect of viewpoint for very familiar objects
- Definite effect for novel objects
- Effect decays with familiarity

- Explanation:
- Handedness or "top/bottom" must be determined
- View-invariant model built over time
- Multiple-view model elaborated with time

Rotation for Handedness

- Object must be rotated to "upright" to compare right and left.
- Normalization only necessary in handedness determination.
- Non-ethological studies.
- Surreptitious check for handedness.

Shepard and Metzler, 1971

- Handedness determination established to involve angle-dependent normalization: "mental rotation."

Electrophysiological Aside

(b)

Tarr’s Response

Tarr, 1995

- Goals:
- Explicitly eliminate handedness from study.
- Establish same normalization procedure used for handedness determination and object identification
- Problems:
- Do these objects have geons?

- Clearly defined base
- Subjects built and named objects
- In both versions
- Doing their best to allow for 3D model development

Tarr’s Response
 Tarr, 1995

- General scheme of experiments
- Train: Subset of test images shown on a specific orientation (10° off each axis
- Practice: Subset of test images shown at an additional orientation (130° off axis)
- Set’s "multiple-view"
- Test: Images (often containing distracters) shown at a variety of viewpoints

Tarr's Baseline:

Establish Mental Rotation Effects

- Handedness Task
- Kip, Kef, Kor
- Train: 10° off each axis
- Practice: add 130° off axis

1

2

6

Tarr's Baseline:

Establish Correlates of Rotation

- Test: 11 viewpoints at 30° intervals about each axis
- Results:
- May be explained by Rotation for Handedness
- Shortest path rotation (usually)
- Multiple View
- Interpolation vs. Extrapolation

Tarr's Correlate:

Compare Rotation to Identification

- Identification Task
- Inverted objects did not appear
- Presence of Distracters
- Similarity to Exp 1 suggests same mechanism used in identification as handedness
- Failed to find any effects of visible feature set
- Subjective evaluation of foreshortening

Tarr and Pinker, 1989

A Very Odd Result

- 2D Objects
- Handedness explicitly irrelevant
- Subjects trained on both orientations
- Mirror pairs assigned same name
- Response time flat for all reversed images!
- 180° rotation will always align
- With training in both orientations
- Viewpoint variability recovered
- However, mirror image effects seen as evidence of invariant model

Tarr’s Invisible Hand:

Handedness Explicitly Removed

- Suppose models are invariant to viewpoint and handedness.
- Subjects may be
"surreptitiously" determining handedness
- For 3D objects, rotation alignment would have to be in 4D.
- Two versions:
- Learned both versions
- Learned only standard version

- In both cases, images appear to have been normalized to the nearest learned orientation.
- Even if that learned orientation was of a different handedness.

Bülthoff, Edelman, \& Tarr, 1994

The Alpha and Omega, Now with Sprinkles!

Canonical Views
Some viewpoints are better than others.

Magnitude of this effect tends to decay with time

Monkeys and faces

View-sphere visualization of $R T=f$ (viewangle) Session 1

Session 2

Electrophysiological Aside

(c)

Neural correlates of model development

In the Familiar Limit:

Heavy Viewing

- Inverted images not shown until test phase.
- Inverted objects shown to be normalized to nearest familiar orientation.
- Evidence of handednessinvariant multiple-view model?

Object Models with Practice

- Given identification of familiar objects seems viewpoint independent
- Does this imply development of an independent model?
- Let's practice

Human Subjects

Comparison with Models

- Clearly some form of normalization is not only extant but systematic.
- Is psychophysical data consistent with any particular normalization model?
- Ullman's Method of Alignment: (Ullman, 1989)
- A small number of orientation features used to align an object
- Projection to 2D and comparison.
- Expected Results:
- Variable reaction time
- Constant error rate

Comparison with Models

- Linear Combination of Views
- Ullman and Basri, 1991
- Any object point can be represented as a linear combination of the points of the same feature in a small number of 2D sample image representations.
- Object is recognized if the test image lies in the subspace spanned by the "basis" views.
- Expected results
- Invariance in the subspace spanned by training views.

Comparison with Models

- HyperBF
- Poggio and Edelman, 1990; Poggio and Girosi, 1990)
- Output by threshold.
- Most consistent with psychophysical data.
- Somewhat complex performance variability

$$
f(x)=\sum_{\alpha=1}^{K} c_{\alpha} G\left(\left\|x-t_{\alpha}\right\|\right)
$$

a

b

Synthesis:

Foster and Gilson, 2002

- Same/Different task
- Objects defined by normalized:
- Number of elements
- Length of elements
- Curvature of elements
- Angle of join
- "Different" pairs only varied by one attribute.
- Discriminability:

$$
d^{\prime}=z(H R)-z(F A R)
$$

Results

Foster and Gilson, 2002

- Linear dependence of discriminability on cue value

- Additivity of discriminability

$$
d^{\prime}=\left[k_{i}+f(\theta)\right] \Delta c
$$

Summary

- In the end, both sides agree
- A change in viewpoint will result in viewpoint costs
- Small in some cases
- Invariant structural properties important for generalizing across viewpoint
- Data supporting both sides has been replicated many times
- Can no longer argue opponent’s results are a special case
- Moving on, we try to understand how both types of analysis combine to provide robust object recognition

