Object Recognition: the Case for 2D Multiple Views

C. Andrew Burlingame COS594B: Vision February 25, 2008

Elegant Geons Don't Fit the Data

- Geon model predicts no systematic affect of viewpoint.
- Reaction time (RT) and error rates (ER) both affected by viewpoint for certain object types.

Inconsistent Results

- Little effect of viewpoint for very familiar objects
- Definite effect for novel objects
 - Effect decays with familiarity
- Explanation:
 - Handedness or "top/bottom" must be determined
 - View-invariant model built over time
 - Multiple-view model elaborated with time

Rotation for Handedness

- Object must be rotated to "upright" to compare right and left.
- Normalization only necessary in handedness determination.
- Non-ethological studies.
- Surreptitious check for handedness.

Shepard and Metzler, 1971

• Handedness determination established to involve angle-dependent normalization: "mental rotation."

Electrophysiological Aside

Tarr's Response Tarr, 1995

- Goals:
 - Explicitly eliminate handedness from study.
 - Establish same normalization procedure used for handedness determination and object identification
- Problems:
 - Do these objects have geons?

- Clearly defined base
- Subjects built and named objects
 - In both versions
 - Doing their best to allow for 3D model development

Tarr's Response Tarr, 1995

- General scheme of experiments
 - Train: Subset of test images shown on a specific orientation (10° off each axis
 - Practice: Subset of test images shown at an additional orientation (130° off axis)
 - Set's "multiple-view"
 - Test: Images (often containing distracters) shown at a variety of viewpoints

Tarr's Baseline: Establish Mental Rotation Effects

- Handedness Task
- Kip, Kef, Kor
- **Train:** 10° off each axis
- **Practice:** add 130° off axis

Tarr's Baseline: Establish Correlates of Rotation

- **Test:** 11 viewpoints at 30° intervals about each axis
- Results:
 - May be explained by Rotation for Handedness
 - Shortest path rotation (usually)
 - Multiple View
 - Interpolation vs. Extrapolation

Tarr's Correlate: Compare Rotation to Identification

- Identification Task
- Inverted objects did not appear
- Presence of Distracters
- Similarity to Exp 1 suggests same mechanism used in identification as handedness
- Failed to find any effects of visible feature set
 - Subjective evaluation of foreshortening

Tarr and Pinker, 1989 A Very Odd Result

- 2D Objects
- Handedness explicitly irrelevant
 - Subjects trained on both orientations
 - Mirror pairs assigned same name
- Response time flat for all reversed images!
 - 180° rotation will always align
- With training in both orientations
 - Viewpoint variability recovered
- However, mirror image effects seen as evidence of invariant model

Tarr's Invisible Hand: Handedness Explicitly Removed

- Suppose models are invariant to viewpoint *and* handedness.
- Subjects may be "surreptitiously" determining handedness
- For 3D objects, rotation alignment would have to be in 4D.
- Two versions:
 - Learned both versions
 - Learned only standard version

- In both cases, images appear to have been normalized to the nearest learned orientation.
 - Even if that learned orientation was of a different handedness.

Bülthoff, Edelman, & Tarr, 1994

The Alpha and Omega, Now with Sprinkles!

Canonical Views

Some viewpoints are better than others.

Magnitude of this effect tends to decay with time

Monkeys and faces

View-sphere visualization of RT = f(viewangle)Session 1

Electrophysiological Aside

(c)

Neural correlates of model development

In the Familiar Limit:

Heavy Viewing

- Inverted images not shown until test phase.
- Inverted objects shown to be normalized to nearest familiar orientation.
- Evidence of handednessinvariant multiple-view model?

Object Models with Practice

- Given identification of familiar objects seems viewpoint independent
 - Does this imply development of an independent model?
 - Let's practice

Comparison with Models

- Clearly some form of normalization is not only extant but systematic.
- Is psychophysical data consistent with any particular normalization model?
- Ullman's Method of Alignment: (Ullman, 1989)
 - A small number of orientation features used to align an object
 - Projection to 2D and comparison.
 - Expected Results:
 - Variable reaction time
 - Constant error rate

Comparison with Models

- Linear Combination of Views
 - Ullman and Basri, 1991
 - Any object point can be represented as a linear combination of the points of the same feature in a small number of 2D sample image representations.
 - Object is recognized if the test image lies in the subspace spanned by the "basis" views.
 - Expected results
 - Invariance in the subspace spanned by training views.

Comparison with Models

- HyperBF •
 - Poggio and Edelman, 1990; Poggio and Girosi, 1990)
 - Output by threshold. _
 - Most consistent with psychophysical data. ____
 - Somewhat complex performance variability

$$f(\mathbf{x}) = \sum_{\alpha=1}^{K} c_{\alpha} G\left(\| \mathbf{x} - t_{\alpha} \| \right)$$

a

Input

RBFs

 c_{na}

Output

 $\mathbf{x}_{1}' \mathbf{y}_{1}' \mathbf{x}_{2}' \mathbf{y}_{2}' \mathbf{x}_{N}' \mathbf{y}_{N}'$

Output

 $\mathbf{x}_{1}' \mathbf{y}_{1}' \mathbf{x}_{2}' \mathbf{y}_{2}' \mathbf{x}_{N}' \mathbf{y}_{N}'$

1 ~1. -1N

Synthesis: Foster and Gilson, 2002

- Same/Different task
- Objects defined by normalized:
 - Number of elements
 - Length of elements
 - Curvature of elements
 - Angle of join
- "Different" pairs only varied by one attribute.
- Discriminability:

d' = z(HR) - z(FAR)

Results Foster and Gilson, 2002

• Linear dependence of discriminability on cue value

• Additivity of discriminability $d' = [k_i + f(\theta)]\Delta c$

Summary

- In the end, both sides agree
 - A change in viewpoint will result in viewpoint costs
 - Small in some cases
 - Invariant structural properties important for generalizing across viewpoint
 - Data supporting both sides has been replicated many times
 - Can no longer argue opponent's results are a special case
- Moving on, we try to understand how both types of analysis combine to provide robust object recognition