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Overview

e Intermediate-complexity features

o Image “fragments”
Used in object classification
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Part 1. Image Fragments




Neuroscience Background

e V1: Simple lines, edges or small regions [Hubel, 0. H., wiesel, T.

N.: Receptive fields and functional architecture of monkey striate cortex (1968)]
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Neuroscience Background :
e V2: Collinear arrangements of features |wiskott, L., et al: Face
Recognition by Elastic Bunch Graph Matching (1999)]
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Neuroscience Background :
o V4. Splral and pOIar ShapeS [Gallant, J.L., et al: Selectivity for polar,
hyperbolic, and cartesian gratings in macaque visual cortex (1993)]
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Nature Reviews Neuroscience (2006)] Ventral
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Neuroscience Background :
o [E: ShapeS similar to a Ilp or eyebrOW [Tanaka, K.: Neural
Mechanisms of Object Recognition. Science, Vol. 262 (1993)]
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Image Source: [Komatsu, Hidehiko: The
neural mechanisms of perceptual filling-in. -
Nature Reviews Neuroscience (2006)] Ventral



Neuroscience Background

e Anterior IT: Complete or partial object views [Logothetis, et a:

View-dependent object recognition in monkeys (1994)]
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Neuroscience Background

e Preferred Stimuli: Specific 2D patterns
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Neuroscience Background :
e Preferred Stimuli: Dependent on training stimuli &
Independent of position and orientation
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Ullman’s Model

e Preferred Stimuli:
e Specific 2D patterns
e Dependent on training stimuli
e Position and orientation independent
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Computer Science Background

e Class-independent small features:

o Wavelets & Gabor functions
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B



Image Fragments

e Overlapping patches of images
e Varying sizes, locations and resolutions
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Image Fragment Extraction

e Extract many hundreds of features from each image

e Never explain how or exactly how many
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Presenter
Presentation Notes
Also, cars have gray backgrounds and faces have white backgrounds in this image


Image Fragment Selection

e Step 1: Remove fragments which only appear once
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Presentation Notes
C = is object in class?

F = is fragment in image?




Aside - Ordinal Measures
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Image Fragment Comparison

e Difference between fragments F and H:
D(F.H) =k, Yd|+k, G, -G,

Oy — Oy |+ K,

e 0, orientation
o Gy: gradient

e Fragments F and H are the same if:
D(F,H) < Threshold




Image Fragment Selection

e Step 1: Remove fragments which only appear once
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Presenter
Presentation Notes
C = is object in class?

F = is fragment in image?




Image Fragment Selection

o Step 2: Select the 8 most informative fragments
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Aside — Information Theory

e Entropy:

e Amount of information transmitted.

o H(X)= —ZK:P(xi)Iog(P(xi)) Where X is r.v.




Aside — Information Theory

e Mutual Information:
e The amount of information about X given by Y.

o 1(X,Y) = H(X) - H(X]Y) Where X and Y arer.v.’s



Image Fragment Selection

o Step 2: Select the 8 fragments with highest I(C,F)

o I(C,F)=H(C)-H(C|F)

C = object is in the class

F = fragment is in the image
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Image Fragment Selection

e Step 3: Select more fragments of the same 8 types
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Fragment Selection - Results

e Dataset of 138 faces and 40 cars

e Resultant fragments had intermediate size:
o Median: 11% object size
o SD: 16% object size

e All had intermediate size or resolution
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Fragment Selection- Results

e Information peaks at intermediate size:
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Fragment Selection- Results

e Mutual information peaks at intermediate resolution.
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Fragment Selection - Analysis

e These fragments provide best compromise between:

o Specificity
o Relative frequency
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Part 2: Classification Algorithm




Classification Algorithm

e Extracted fragments from a training set
e Classify objects in new images




Classification Algorithm

e Step 1: Detect fragments

o Extract candidate fragments H from the image:
Size: 0.5-2 times area of F
Location: Steps of 3 pixels
Resolution: 1x to 1/10x in steps of 1/20x




Classification Algorithm

e Step 2: Local search around detected fragments
o Slight adjustments in size, location and resolution




Classification Algorithm

e Likelihood ratio of the image belonging to class C:

P(F|C)
o R(F):

P(F|C)

o F =fragment detected in image



Classification Algorithm

o Step 3: Sum likelihood ratios

2. w, max(F,) >0

o F, =I-th fragment of k-th type
o W =log,(R(F))
o O = threshold
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Classification Algorithm

e To detect faces of varying sizes, test images are
rescaled at multiple levels
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Classification Performance

e 200 face images & 200 non-face images

e Results:
97% detection
2.1% false detection.

e Comparable to best preexisting systems




Classification Performance

e “Optimal size” fragments:
95.6% face detection
0% false alarms

e Smaller fragments (4% of average face area) :
97% face detection
30.4% false alarms

e Larger fragments (33% of average face area) :
39% face detection
0% false alarms



Arrangement Specificity
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Part 3: Other Things



Other Things

Fragments Novel Full face

e Matching:

e *No numerical data about the 8 observers’ judgments is provided



Other Things

e Fragments used in back prop neural net.

e Improved classification performance of net.
e *No numerical data is given




Conclusions

e |C fragments are most informative fragments.
e Fragments are good at classification.
e Similar to human visual pathway.



Why Are Fragments Good?

e Similar to cortex

-eatures learned from experience
ntermediate complexity

ndependent of position and some rotation

e Perform global search on large set of
potential features.

Back-propagation models start from randomly
selected features and perform local search.




Why Are Fragments Bad?

e Cannot generalize to large changes in
rotation:

No 3D information
e Rectangular




Additional Critiques

e As a computer science paper:
Qualitative comparison with other methods
Test on more difficult object classes
e As a neuroscience paper:
Neurons that respond to the extracted fragments?
No additional work
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