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The “Evolution”

m Fukushima, Biol. Cybernetics 80

Early attempts with neural network to mimic
hierarchical model of Hubel & Wiesel 65’

m Et al. Poggio, Nature Neuroscience 99
Max Vs. Sum pooling

m Et al. Poggio, PAMI O7

State-of-art neural network
Extensive experiments
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Neocognitron (Fukushima)
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

m Hierarchical structure
m From “simple” to “complex”
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A straightforward extension of this is to start with simple cells and 

end up with  “higher-order-hyper-complex cells”. 


m Along the hierarchy, two functional stages
are interleaved:
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nle (S) units build an increasingly
nlex and specific representation by

nining the response of several subunits
different selectivity

Complex (C) units build an increasingly
Invariant representation (to position and scale)
by combing the response of several subunits

with

the same selectivity but at slightly

different position and scales
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

m Hierarchical structure

m From “simple” to “complex”

m [ncrease Invariance

The basic idea and goals persists till now!
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Then...What has evolved?

m How much more we know about human
visual system?
m For neural network model
How to connect each layer?

What Is the computing model of each layer?
How many layers?
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The hierarchy based on the brain model

Riesenhuber, M., and Poggio, T. (2000)

Et al. Poggio 1999.
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Experiment

Training stage

The monkey was trained to recognize restricted set
of views of unfamiliar target stimuli resembling
paperclips. They check which IT cell responds best
to all views. The cell that responded the most was
picked for the study.

3/31/2008 Credit to Tomer Livne and Maria Zeldin 8




Test stage:

The best reaction of the cell was to the trained data.
The second best was to new transformations of the

trained object.
And very little response to new objects (distractors)
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Quantitative results

Fig. I|. Imvariance properties of one neuron (modified from

a h Logothetis et alll). The figure shows the response of a single cell
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cranslation and size changes, even though the monkey had only
0 gean the stimulus at one position and scale during training
‘ {a) Rezponze of the cell to rotation in depth around the pre-
ferred view: (b) Cell's response to the ten distractor objects
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Invariance

m All kinds of invariance
Translation
Scale
Rotation
m How to add invariance in the NN model?
Pooling (Perrett & Oram 93’)
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m Pooling over afferents tuned to various
transformed versions of the same stimull

m Two Idealized mechanism

Linear — Sum
m Suitable to increase complexity

Nonlinear — Max
m Selectivity

m Which Is a better fit for the complex cell to
achieve invariance?
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Argu(1): position invariance

m Both lead to position invariance
B SuUm

Specificity Is lost

Case-by-case parameter adjustments in clutter
m Max

signal the best match of any part of the
stimulus to the afferents’ preferred feature

More robust In clutter
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Argu(2). size invariance

mESum

More afferents will be excited if the same
object increases size;

hence excitation of the cell will increase
m Max

Cell response is determined by the best-
matching afferent

Not influenced much by more afferents

3/31/2008
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Argu(3):neurophysiological data

m An IT neuron’s response seems to be
dominated by the stimulus producing a
higher firing rate

m Theoretical investigation on V1 also

supports a MAX-like pooling mechanism
(Sakal & Tanaka 97 )
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Argu(4).Experiment
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Fig. 3. Highly nonlinear shape-tuning properties of the MAX mechanism. (a) Experimentally observed responses of IT cells obtained using a ‘simplifi-
cation procedure’?® designed to determine ‘optimal’ features (responses normalized so that the response to the preferred stimulus is equal to ). In
that experiment, the cell originally responded quite strongly to the image of a ‘water bottle’ (leftmost object). The stimulus was then ‘simplified’ to its
monochromatic outline, which increased the cell’s firing, and further, to a paddle-like object consisting of a bar supporting an ellipse. Whereas this
object evoked a strong response, the bar or the ellipse alone produced almost no respense at all (figure used by permission). (b) Comparison of
experiment and model. White bars show the responses of the experimental neuron from (a). Black and gray bars show the response of a model neu-
ron tuned to the stem-ellipscidal base transition of the preferred stimulus. The model neuren is at the top of a simplified version of the model shown
in Fig. 2, where there were only two types of S| features at each position in the receptive field, each tuned to the left or right side of the transition
region, which fed into C| units that pooled them using either a MAX function (black bars) or a SUM function (gray bars). The model neuron was con-
nected to these C| units so that its respense was maximal when the experimental neuron’s preferred stimulus was in its receptive field.
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Argu(5):Simulation
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Softmax approximation

Joy exp(p - |s;|)
T 2 exp(p - [si))

m P=0, linear sum
m P->0 MAX

Sj)
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m NN can really look like the visual pathway
m Alternative Max + Sum seems to work for a NN

m Recognition of different transformations of an
object is similar to the problem of classification

m Use NN to learn features and do classification with
linear classifiers
(et al. Poggio 07)
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The hierarchy based on the brain model

Riesenhuber, M., and Poggio, T. (2000)

Et al. Poggio 1999.
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Implementation Detalls

m Along the hierarchy, from V1 to IT, two functional
stages are interleaved:

3/31/2008

Simple (S) units build an increasingly complex and
specific representation by combining the response of
several subunits with different selectivity with
TUNING operation.

Complex (C) units build an increasingly invariant
representation (to position and scale) by combing the
response of several subunits with the same selectivity
but at slightly different position and scales with a
MAX-like operation.
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Implementation Detalls

s4
(1) Selectivity (AND-like): = = e
Gaussian-like function for tuning ﬁ ]
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Implementation Detalls

m By interleaving these two operation, an
Increasingly complex and invariant
representation is built.

m [ WO routes:

Main route
m follows the hierarchy of cortical stages strictly.

Bypass route
= skip some of the stages

m Bypass routes may help provide richer vocabulary of shape-
tuned units with different levels of complexity and invariance.

3/31/2008 Credit to Serre and Poggio 23



Implementation Detalls

m S, units:
Correspond to the classical simple cells of Hubel
and Wiesel found in the primary visual cortex (V1)

S, units take the form of Gabor functions

(X, "‘7 yo)
20°
X, = XC0s@+ysing and y, =—xsin &+ ycosd

0

The aspect ratio: ¥ The orientation:

f(X,y)=exp(- )xcos(7x )

The effective width: O The wavelength: 4

3/31/2008 Credit to Serre and Poggio 24



Implementation Detalls

Perform TUNING operation between
the incoming pattern of input x and
there weight vector w.

The response of a S; unit is maximal
when x matches w exactly.

- optimal bar
08! = = edge
' ee grating
@
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o
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orientation (in degree
3/31/2008 ( gree) Credit to Serre and Poggio 25



Implementation Detalls

m C, units:

3/31/2008

Corresponds to cortical complex cell which
show some tolerance to shift and size.

Each of the complex C; unit receives the
outputs of a group of simple S; units from the
first layer with the same preferred orientation
but at slightly different positions and sizes.

The operation by which the S; unit responses
are combined at the C, level Is a nonlinear
MAX-like operation.
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Implementation Detalls

O strongest S1 afferent |
| from the pool |
|

| 51 afferents

| _ _ ]
C1 C1
Local max over pool of S1 cells

é 1 2 1 2
A\ N A
D) T S1
ia A S
r

(a) Tolerance to position (b) Tolerance to scale
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Implementation Detalls

1 This process is done for each of the four
orientations and each scale band independently.

3/31/2008

C, layer Sy layer
Scale Spatial pooling Overlap filter Gabor | Gabor
band S | grid (Ns x Ng) | Ag size o A
Band1 | 8x8 ¢ || oxo | 38 | 16
Band2 | 10x10 5 || iaxis| se | es
Band 3 12 x 12 6 i? i }? 3;3 ;:?
Band 4 14 x 14 7 ;? z éi) S:g i?:g
Band5 | 1616 8 | 25x2s | 11a | 141
Band6 | 1518 o | 29x | 134 | 168
Band7 | 2020 0 |l 3% | 158 | 197
Band 8 22 x 22 11 S| oo | 22e
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Implementation Detalls

m For instance

The first band: S=1.
two S; maps: the one obtained using a filter of
Size 7x7 and 9x9.

For each orientation, the C, unit responses are
computed by subsampling these maps using

N XN =8x8.

One single measurement is obtained by taking
the maximum of all 64 elements.

As a last stage, we take a max over the two
scales from within the same spatial neighborhood.
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Implementation Detalls

m S, unit:

3/31/2008

A TURNING operation is taken over C, units
at different preferred orientations to increase
the complexity of the optimal stimulus.

S, level units becomes selective to more
complex patterns — such as the combination
of oriented bars to form contours or boundary-
conformations.
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Implementation Detalls

Each S, units response depends in a Gaussian-way
on the Euclidean distance between a new input and a
stored prototype .

2
r =exp(-A|X —R|[")
P, Is one of the N features learned during training.

patch X from the previous C, layer at a particular
scale S
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Implementation Detalls

IC2

3/31/2008

Our final set of shift- and sca
responses is computed by ta

e-invariant C,
King a global

maximum over all scales anc

position for

each S, type over the entire S, lattice.

Units that are tuned to the same preferred
stimulus but at slightly different positions and

scales.
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Implementation Detalls

m The learning stage
Corresponds to selecting a set of N
prototypes P; for the S, units.

m The classification stage

The C, and C, standard model features (SMF)
are then extracted and further passed to a
simple linear classifier.
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Model Summary

m 4 Layers of processing
m 2 types of operations (Max, Sum)
m Output — N dimensional vector

3/31/2008

35



m O
m O

m O
O

0

D
D.
nject Recognition of
jects

ject Recognition wit

ject Recognition in Clutter

nout Clutter

exture-Based

m Toward a Full System for Scene
Understanding
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Exp. with clutter

m Data Sets
Caltechb, Caltech101, MIT-CBCL

m Training and test images contains both
targets and distractors

3/31/2008
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TABLE 2
Results Obtained with 1,000 (', Features Combined with
svM or GentleBoost (boost) Classifiers and Comparison
with Existing Systems (Benchmark)

Datasets Benchmark | C; features

boost SVM
Leaves [19] 84.0 97.0 959
Cars [20] 84.8 99.7 99.8
Faces [20] 96.4 98.2 98.1
Airplanes [20] 94.0 96.7 0949
Motorcycles [20] 95.0 980 974
Faces [17] 90.4 959 953
Cars [18] 75.4 95.1 933
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Performance (Equilibrium point)

313 Fig. 3. Comparison between the SIFT and the (', features on the CalTechs
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Fig. 4. Performance obtained with gentleBoost and different numbers of (; features on the (a) CalTech5 and on sample categories from the
(b) CalTech101 for a different number of training examples.
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Exp. without clutter

m Data Sets
StreetScenes Database
Car, pedestrian, bicycle

m Training with gentleBoost

m Training sets of only either pos. or neg.

m Randomized training(1/3) and testing(2/3)
= \WWindowing approach

3/31/2008
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car detection ROC curve pedestrian detection ROC curve
15 b i L
rrrot e A R : BamEEEw e -
7 : -.--"‘"‘-- : .
amn=h® g 09 . e
; " : - i
L -
: o -
R il 048k T
L
& i
*
0.7
E 3‘]'6 i
wa:k & fi
05! P 203 L
= ! P i
3 ’ 2 = i
ST R S | == CySMFs Soaf s .
I
E I — HoG g |":
i
03K C ,SMFs T03ke
Iz S & i
ks Part-Based System i .i
i === (rayscale
01t : == Local Patch Correlation 0.1
b : 5 5 .
G 1 i 1 L 1 ! 1 u 1 1 1 1
] 01 02 03 04 05 06 07 08 09 1 a a1 02 03 04 05 06 07 08
False Positive Rate False Positive Rate
bicycle detection ROC curve
e - am ¥ .
iy - n® :
.-" «* J .l‘"-.
L - :
# " :
i . :
T TR I b y "
o I
# “‘E :
* * t

3/31/2008

06H ...f o
E gy "5
os| | ;
T
] e i
Eu'“"i""i""""'.
i
§ 1y
Fof, 0
(N ]
* :
ﬂl;lll."
r 3
ol -
IJ.'IF ;
1
DU 01 02

03 04 05 06 07 08 09
False Positive Rate

0.9

42



EXp. on Texture based objects

m Again C1 and C2 based classifiers

m C2 features are now evaluated only locally, not
over all image locations

m C2 based classification is better (the features are
more invariant and complex)

m Evaluated by correct labeling of pixels in the
Image

L

3/31/2008
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ODbject specific features or a
universal dictionary

m A Universal dictionary based system is good for small
training sets (10,000 features)

m An object specific based system is better when using
large training sets (improves with practice — increased
number of features [200 an image])
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A unified system — looking at
multiple processing levels

m The hierarchical nature of the described system
enables the use of multiple levels of feature

m Recognizing both shape and texture based
objects in the same image

m Two processing pathways

3/31/2008
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Standard Model

Input image classification

—_—

Output

—— Texture-based objects pathway (e.g., trees, road..)
- Shape-based objects pathway (e.g., pedestrians, cars..)

Standard Model
classification
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Scene understanding task

m Complex scene understanding requires more than just
detection of objects, location information of the detected
objects is also required

m Shape-based objects

C1 based classification, using a windowing approach,
for both identification and localization

Local neighborhood suppression by the maximal
detected result

m Texture-based objects
C2 based classification

texture boundaries posses a problem CSsolved by
additionally segmenting the image and averaging the
responses within each segment)
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Improvement?

m Only feedforward
m Processing speed

3/31/2008
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Thank you!
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