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the whole is more than sum of ...

Problem
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Pixel similarity

Segmentation = pixel partition

Image Segmentation
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e “No Country for Old Men,” Joel and Ethan Coen’s chilling Intensity
confrontation of a desperate man with a relentless killer, won the Color
Academy Award for best picture on Sunday night, providing a more- Edges
than-satisfying ending for the makers of a film that many believed Texture
lacked one.

o Even as it enriches Arab rulers, the recent oil-price boom is helping
to fuel an extraordinary rise in the cost of food and other basic
goods that is squeezing this region’s middle class and setting off
strikes, demonstrations and occasional riots from Morocco to the
Persian Gulf.
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Graph Segmentation

Graph Affinities

Image =—p VI?/=W(I o)

| Intensity ’
Color
Edges
Texture

Graph Based Image Segmentation

§ Wijj

G = {V,E}

Image = { pixels } V: graph nodes
Pixel similarity E: edges connection nodes

Segmentation = Graph partition

Right partition cost function!?

Efficient optimization algorithm?




Minimal/Maximal Spanning Tree

Tree is a graph G without cycle

For simple cases,
can try this:

Maximal Minimal

Leakage problem in MST

Prim’s algorithm

let T be a single vertex x
while (T has fewer than n vertices)

{

find the smallest edge connecting T to G-T

add itto T
e 4




Graph Segmentation

local bad, global good
Image =——p

| Intensity
Color

Edges

Texture

Graph Affinities
W=W(l,0)

Example from Eitan Sharon

Spectral Graph Segmentation

Graph Cut

F Yy =gy

Graph Affinities
W=W(l,0)

Graph to encode

Gestalt:
Cetting the big Global good, local bad

\ 4
@ picture of scene




Normalize cuts in a graph

* (edge) Ncut = balanced cut @ ?%f

Ncut(A, B) = cut(A, B)(

Problem with min cuts

vol(A)

Min. cuts favors isolated clusters

Spectral Graph Segmentation

Graph Affinities Eigenvector X
W=W(1,0) - W

l l

1 1 WX = ADX
Ncut(A, B) = cut(4, B)(——~ + ———) cut(A4,B)
vol(A)  wol(B) Nyl A P ) 1At A

0ifid A

measure both grouping and X 4@ :{
segmentation cost.




Representation Graph weight matrix W

Partition matrix: fa b

M e

n=nr * nc

(@

SpECtraI Graph Seg mentation Find Continuous Global Optima

XT(D — W)X,
Ncut e Z XTDX,

Eigenvector X
- W) becomes

1
l Ncut(Z) = Etr(ZTWZ) Y
_,| WX =ADX

cut(A,B)

s 1ificA
Vol A’ Vol B x,@m=1 "'S
0ifig A

NCut(A,B) =




becomes : Interpretation as a Dynamical System
Ncut(Z) = Etr(ZTWZ) ZiDZ =1

We use the generalization of the Rayleigh-Ritz theorem to solve
it.

Rayleigh and...

Interpretation as a Dynamical System

Eigenvector X : .
W) ==p Discretisation

l

cut(A,B)

NCut(A,B)= ————
Vol A" Vol B




intensity edges cues

Brightness Image
Segmentation

Multiscale cues Texture cues
38




[Yu&Shi,03PAMI]

Visual Popout:
Segmentation with Attention
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Multiscale Segmentation

Linear running time

Scale 3

Scale 2

Scale 2

Scale |

[Cour,Benezit,Shi, CVPRO5]

Spectral Graph Segmentation

intensity . R
Color
" Edges

Texture

Graph Affinities
W=W(l,0)
A

Learn graph Target :
parameters O, segmentati

and Graph structure itself on
Reverse pipeline

Saliency Region Correspondences
[Toshev,Shi,Daniilidis,CVPRO7]

Untangling Cycles for Contour Grouping. Qihui Zhu, Gang Song, Jianbo Shi, ICCV 2007

7t
=
C lva .,
X -
‘._/y.J
(@ Edge detection (@) Construct directed graph (3 Compute complex eij
Goal: detect and group salient topolo- Challenge: 2D clutter and ga

gically 1D structures robust to 2D
clutter and gap.

Approach: We construct a directed
contour graph from image edgels and
define a random walk on it. Extracting
image contours, either closed or open,
boils down to finding persistent graph
random walk cycles. The ‘peakness’ of the returning probability 5(i |i) indicates 1D contour saliency, shown on the right.
We show that this measure is determined by the complex eigenvectors of the random walk matrix, |nstead of the real
eigenvectors. We derive a computational solution by tracing large cycles in d
contours in various datasets successfully capture salient 1D image structures, as shown at the bottom.

Image contours = graph cycles Contour saliency and persistent cycles
P11 , Persistent cycle = 1D ?ontour
.
' '
i '
Closed contour ' T 2T 3T [
Non-persistent cycle = 2D clutter
R(ili) '

t

3 ST 2 3T
Open contour B(i11): probability of random walk starting from i and return to it in ¢ steps




Precision-Recall on Berkeley Segmentation Benchmark

—8—Our work
—&—Min cover|:

Precision

51

Where is Waldo ?




» Edges cues ?
g% Do you use Color cues ?
Texture cues ?

—That’s not enough, you need
Shape cues
High-level object priors

Part-based models
e Combination of appearance-based and
geometrical models
- Each part represents local visual properties

- Spatial configuration captured by statistical
model or spring-like connections

e Pictorial structures, Constellation of parts

History goes back to
Fischler and Elschlager, 1973

Image segmentation to Object recognition

1) Graph based image segmentation

~| 2) Bottom-up and Top-down Recognition

Part-based Object Representation

® Object with n parts labeled 1 through n

e Object configuration given by: L = (Iy,....,[,)

- Location of each part

(L1, L2,L3, L4) =((300,200), (300,250), (330,230),(360,230) )




Part-based Object Representation

Geometrical model: P(L)

measuring “goodness” of the part configuration

Appearance model: P(I|L) H,g.,i(I, L;)
~
image Label

measuring “goodness” of the part appearance

Object Specific Segmentation

[Yu&Shi,03CVPR] T

Eran Borenstein, Shimon Ullman:

Class-Specific, Top-Down Segmentation. ECCV (2) 2002

* Fit image to model
- Jigsaw puzzle

Segmentation

Manu'llly
labeling

Segmentation

super pixels

Hand labeled
object
Shape parts

Grouping

A WA




BUT: Results are Distorted:

Shapes are not additive

Whole is not sum of its parts

There is efficient computation procedures for this.

61

Contour Context Selection for Object Detection

Contour Context Selection for Object Detection. Qihui Zhu, Liming Wang, Yang Wu, Jianbo Shi, submitted to CVPR 2008

the whole is more than sum o

Why selection? Given an object model (Fig 1), our

P ~ o - goal I1s to detect and match object instances in images via
’ N A N AL its shape. In real images, target objects are often swamped
] \ % RN 2= 3 N - by background clutter as shown in Fig. 2. To obtain reliable
(R W ey \  shape measure robust to background clutter, we introduce
N~
L —.e ] \ e d (Q context selection to point-to-point matching. Without
A— = A 7 — - \<- selection, shape configuration around point B in Fig. 2 is
~ > - 7 t———v_/__‘_' totally different from that around point A in the swan model
— - c ’ 22

(Fig.1). With selection (foreground as blue lines in Fig.3),
Fig. 1 Fig. 2 Fig.3 shape at noint A hecames more similar to noint B

What to select? our context selection is D
based on contour (a group of edge points which /s =
act as a integral part) instead of isolated edge | §
points. Accidental alignment (green points in Fig ‘

4) can be pruned by identifying that a long |

contour (white in Fig. 4) should be selected and Ix.m |

matched as a whole. Fig.5 gives a simple
example of contour selection

Fig. 4

» (f) Consistent F/G Labeling

() (d)
Single Point Figure/Ground Labeling

(b) Contours Fig. 6 (g) Joint Contour Selection




How to select and detect? Given an input image (Fig.6-(a)), we extract long salient contours (Fig.6-(b)) from detected edges. To
perform point-to-point matching, we select contours whose configuration is most similar to model (Fig.6 (c) and (d) are good matches with
selected contours and (e) is a bad match). We accumulate single point matching and selection results to a consistent F/G labeling (Fig.6-(f)).
Fig.6-(g) is the selection result on contours from both model and input image. Images below show our selection and detection result with model.

e {Lower leg, Thigh} — Leg
e {Thigh, Thigh} — Thighs
o {Thighs, Lower leg} — Thighs+Lower leg

o {Thighs+Lower leg, Lower leg} — Lower body
o {Leg, Leg} — Lower body

e {Lower body} — Lower body-+torso

o {Lower body+torso} — Lower body-+torso+head

Figure 2. Our parse rules. We write them in reverse format to
emphasize the bottom-up nature of the parsing.

& Penn

Penn

Parsing: proposal and evaluation

« Parsing begins at leaves,

continues upwards Q

* Parse rules create
proposals for each part
(proposal)

* Proposals scored :
according to shape,
ranked/pruned
(evaluation)

)

Composition Rules

AGrouping

ﬂ O stemsin
r
[d

Lower body+torso




Joint work with, T. Cour, P. Srinivasan,A. Toshev, Q. Zhu, G. Song, F. Benezit,

Bottom-up Recognition and Parsing of Human Body, [Srinivasan & Shi, CVPR 07] L.Wang, .Yy, K. Daniilidis

Thank you!




