

Overview

- Task: Detect most salient regions.
- Decrease dimensionality

Source: [Laurent Itti, USC iLab: http://ilab.usc.edu/bu/] (Same for all images unless otherwise specified.)

Part 1: Model

Overview

 Bottom-Up Method

Step 1: Linear Filtering

Source:

[www.singularsys.com/research/courses/ 616/funk-project-pres.ppt]

• 9 scales from 1:1 to 1:256

Step 2: Extract Feature Maps

• Center-surround operations at multiple scales

Center-Surround Operations

- Difference between value of pixel at two different scales:
 - c: center pixel scale
 - s: surround pixel scale

С

Center-Surround Operations

- c = pixel at scale c € {2,3,4}
- s = pixel at scale c+ δ , where $\delta \in \{3,4\}$
- 6 different scale combinations

Center-Surround Operations

- $c = pixel at scale c \in \{2,3,4\}$
- s = pixel at scale c+ δ , where $\delta \in \{3,4\}$
- 6 different scale combinations

Step 2a: Extract Intensity Maps

I(x): intensity map at scale x θ : pixel difference operation $g(c,s) = |I(c) \theta I(s)|$

Step 2b: Color Maps

Red: R(x)

Green: G(x)

Blue: B(x)

Step 2b: Color Maps

Intensity G R B

Source: [www.singularsys.com/research/courses/616/funk-project-pres.ppt]

200

Step 2b: Extract Color Maps

Create a red-green and blue-yellow color map

 $\mathcal{RG}(c,s) = |(R(c) - G(c))\theta(G(c) - R(c))|$ $\mathcal{BV}(c,s) = |(B(c) - Y(c))\theta(Y(c) - B(c))|$

Source:

[www.singularsys.com/research/courses/616 /funk-project-pres.ppt]

Step 2b: Extract Color Maps

Step 2c: Orientation Maps

- Gabor Filtering:
 - Difference between image and Gabor filter
 - Gabor filters for 4 different orientations

0° 45° 90° 135°

Source: [http://www.cs.rug.nl/~imaging/simplecell.html]

Step 2c: Orientation Maps

Step 2c: Orientation Maps

$\mathcal{O}(c,s,\theta) = |O(c,\theta) \ \theta \ O(s,\theta)|$

Step 3: Combine Feature Maps Into Conspicuity Maps

Step 3: Combine Feature Maps Into Conspicuity Maps

- Normalize map values to range [0..1]
- **m** = avg local max
- $N = (1-m)^2$

Step 3: Combine Feature Maps Into Conspicuity Maps

• Conspicuity Maps:

$$\overline{\mathcal{I}} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{N}(\mathcal{I}(c,s))$$

 $\overline{\mathcal{C}} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} [\mathcal{N}(\mathcal{RG}(c,s)) + \mathcal{N}(\mathcal{BY}(c,s))]$

$$\overline{\mathcal{O}} = \sum_{\theta \in \{0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}\}} \mathcal{N}\left(\bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{N}(\mathcal{O}(c, s, \theta))\right)$$

Step 4: Combine Conspicuity Maps Into Saliency Map

Step 5: Process regions in order of saliency

S

SM

FOA

Integrate-and-fire neurons

Winner-take-all neurons

Step 5: Process regions in order of saliency

S SM I&F WTA FOA 30-70ms

Inhibitionof-return 500-900ms

260 ms

Part 2: Results

Experiments

• Same shape, different contrast, orientation or color

Experiments

• Pop-out:

Noise Sensitivity Experiment

White-color noise

Multicolored noise

Noise Sensitivity Experiment

White-color noise

Multicolored noise

- Only one image
- # trials per density not stated

Spatial Frequency Content Models

- Eye-tracking study shows certain locations are attended to more than others [Reinagel and Zador]
- Measured spatial frequency content (SFC) by:
 - At each image location, extract 16x16 patch of I(2), R(2), G(2), B(2), and Y(2)
 - Apply 2D Fast Fourier Transform

- Dataset:
 - Natural scenes with traffic signs (90 images)

- Dataset:
 - Natural scenes with traffic signs (90 images)

- Dataset:
 - Natural scenes with traffic signs (90 images)
 - Red soda can (104 images)

- Dataset:
 - Natural scenes with traffic signs (90 images)
 - Red soda can (104 images)

- Dataset:
 - Natural scenes with traffic signs (90 images)
 - Red soda can (104 images)
 - Vehicle's emergency triangle (64 images)

Results

Spatial Frequency Content Maps (Red)

Saliency Maps (Yellow)

(0)

- Results:
 - 1st location: SFC 2.5 ± 0.05 times the average SFC
 - ...
 - 8th location: SFC 1.6 ± 0.05 times the average SFC

- Time taken to attend to military vehicle
- Compare to 62 human observers

- Time taken to attend to military vehicle
- Compare to 62 human observers

- Time taken to attend to military vehicle
- Compare to 62 human observers

- Time taken to attend to military vehicle
- Compare to 62 human observers

- Results:
 - Itti's model finds target in fewer attentional shifts in 75% of trials

Natural Images

Natural Images

Why the Model is Effective

- Fast
 - Parallel processing
 - No top-down knowledge
- Similar to primate visual system

Why it Models the Primate Visual System Closely

- Parallel and bottom-up maps
- Maps of orientation, intensity and color
- Linear filtering
- Center-surround operations
- Winner-take-all
- Slow sequential attention shifting

Criticisms of the Model

- Cannot detect junctions of features
- Cannot detect features other than color, intensity and orientation
- No content completion or closure
- Does not include magnocellular motion channel

Criticisms of the Experiments

- Noise experiment was not thorough
- Running time data not given
- No quantitative results for pop-out experiments

Additional Experiments

- Compare to data from human eye-tracking
- Extend this framework to do additional tasks and provide experimental results
 - Scene classification