
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #15
Scribe: (James) Zhen XIANG April 2, 2008

1 Review of the Perceptron Algorithm

In the last few lectures, we talked about various kinds of online learning problems. We
started with the simplest case in which there is a perfect expert, who is always right. In the
last lecture, we generalize this into the case in which we might not have a “perfect expert”,
but instead we have a panel or subcommittee of experts, whose combined prediction is
always right. We also introduced the perceptron algorithm to find the correct combination
of experts.

The perceptron algorithm is an example of a weight-update algorithm, which has the
general framework as follows:

Initialize w1

for t = 1, 2, · · · , T
predict ŷt = sign(wt · xt)
update wt+1 = F (wt,xt, yt).

In general, the updating rule can be dependent on the whole observation history, but
we’ll only consider those F that have the form F (wt,xt, yt), i.e. those updating rules that
only use information of the previous round.

The perceptron algorithm uses the initialization and updating rules as follows:
Initialize w1 = 0

update:
if ŷt 6= yt, where ŷt = sign(wt · xt)

wt+1 = wt + ytxt

else wt+1 = wt.
In the last lecture, we have proved that under assumptions:

• ||xt||2 ≤ 1

• ∃ δ,u s.t. ||u||2 = 1, yt(u · xt) ≥ δ > 0.

the number of mistakes made by perceptron algorithm has an upper bound:

#mistakes ≤ 1

δ2
. (1)

2 The Performance of Perceptron Algorithm on an Example

Now let’s apply perceptron algorithm and its performance bound to a specific example. In
this example, we have N experts. Each experts predicts +1 or −1 in each round. There
is a panel of k experts; when we take the majority vote of these k experts, we always get
the right prediction. Now we would like to use perceptron algorithm to this online learning
problem. We are interested in how many mistakes perceptron algorithm will make in this
case.

Using the notation above, in each round t, the output of experts is a vector xt ∈
{−1,+1}N , for example:

xt = (−1,+1,+1,−1, . . . ,+1). (2)

We assume there is a vector u, which has k 1’s and N − k 0’s as its elements, for example,
u might look like:

u = (0, 1, 0, 1, . . . , 1). (3)

When we take the majority vote of those experts that correspond to positions of 1’s in u,
the prediction is always right. i.e. yt = sign(u · xt).

To use the bound of perceptron algorithm, we first have to normalize xt and u such that
they have unit lengths:

xt =
1√
N

(−1,+1,+1,−1, . . . ,+1) (4)

u =
1√
k
(0, 1, 0, 1, . . . , 1). (5)

After normalization, we see that yt(u · xt) is always an integer times 1√
Nk

(we assume here

that k is odd). So

yt(u · xt) ≥ 1√
Nk

= δ. (6)

Therefore we have a positive margin

δ =
1√
Nk

(7)

so according to theorem (1), the number of mistakes is bounded by

#mistakes ≤ 1

δ2
= Nk. (8)

which is the product of the number of experts and the size of the panel of correct experts.
What we don’t like about this bound is that it’s linearly increasing with the total number
of experts, which means we can’t afford to have too many experts. In practice, we often
have a lot of experts, or a lot of features/attributes to select from. So it’s important for
our algorithm to have good performance even when the number of experts is huge. Today,
we’ll introduce another algorithm (Winnow Algorithm), which gives a bound that is more
tolerant of the total number of experts.

3 Winnow Algorithm

We’ll introduce Winnow algorithm, which is another algorithm to find a perfect subcom-
mittee of experts. The Winnow algorithm will make fewer mistakes than the perceptron
algorithm, especially when the number of experts increases.

The difference between Winnow algorithm and perceptron algorithm is how they update
weights wt. Recall that in perceptron algorithm, we’re adjusting the weight by adding ytxt

to wt: wt+1 = wt + ytxt, that is to increase the weights of those experts who made a right
prediction by adding a number. Instead of adding, we could also try multiplication. That
is the main idea of “Winnow” algorithm: we multiply the weights of those experts who
were right by a number greater than 1, and reduce the weights of those experts who made

2

a mistake by a ratio smaller than one. In detail, let the weight wt,i denote the weight of
the ith expert in the tth round; for convenience, we assume

∑

i wt,i = 1. The “Winnow”
algorithm initializes and updates weights as follows:

Initialize w1,i = 1

N
In each round:

• if the prediction of the master is right, i.e. yt = sign(wt · xt), then don’t change
weights

• if the prediction of the master is wrong, then change weights by: wt+1,i = wt,ie
ηytxt,i/Zt,

where Zt is the normalization factor to make
∑

i wt,i = 1.

This update rule reminds us of the update rule for probability distribution in Adaboost.
Actually, this also looks like the WMA(Weighted Majority Algorithm) that we have covered
before: notice that if we let β = e−2η , and assume xt,i only takes value {−1,+1}, then the
update rule becomes:

wt+1,i =
eηwt,x

Zt
×
{

1, if xt,i = yt

β, otherwise
(9)

This update rule is the same as the update rule of WMA. Actually Winnow and WMA
are the same kind of algorithm, but we analyzed them in different ways. We should still
be aware of the difference between this algorithm and WMA: WMA updates the weights
of experts in every round; if an expert made a mistake, his weight is adjusted. But in this
Winnow algorithm, the weights are updated only when the master (the majority vote of
the weighted experts) makes a mistake.

4 Proving the Performance of Winnow Algorithm

We now analyze the performance of this algorithm. First of all, we make the following
assumptions:

• a mistake is made at every round

• ∀t, ||xt||∞ = 1

• ∃ δ,u, s.t.

– ∀t, yt(u · xt) ≥ δ > 0.

– ||u||1 = 1

– ui ≥ 0 i.e. each element of u is nonnegative; we’ll see later that this assumption
can be removed.

Notice that we use L1 and L∞ norm here instead of the L2 norm that we used in
perceptron algorithm.

We have the following theorem:
Theorem: under previous assumptions, we have the following upper bound on the

number of mistakes :

#mistakes ≤ ln N

ηδ + ln(2

eη+e−η)
. (10)

3

If we choose an optimal η to minimize the bound, we get when η = 1

2
ln(1+δ

1−δ),

#mistakes ≤ 2 ln N

δ2
. (11)

Before proving this theorem, we would first like to apply this theorem to the previous
example in section 2. Since we are using L1 and L∞ norm here instead of L2 norm, we have
to renormalize xt and u as follows:

xt = (−1,+1,+1,−1, . . . ,+1), ||xt||∞ = 1 (12)

u =
1

k
(0, 1, 0, 1, . . . , 1), ||u||1 = 1. (13)

We have yt(u · xt) ≥ 1

k = δ, so by the theorem, the number of mistakes made by Winnow
algorithm satisfies:

#mistakes ≤ 2 ln N

δ2
= 2k2 ln N. (14)

So the number of mistakes only depends on the logarithm of N . This bound is much better
than the bound of perceptron algorithm (Nk) when N is large. This indicates that Winnow
algorithm is more tolerant of the total number of experts.

We now prove this theorem. The idea is similar to the proof we used for perceptron
algorithm: we choose a quantity and watch it in each round. If we can show that the
quantity is decreased by a certain amount at each round and this quantity can never go
below 0, then we can get a bound on the total number of rounds.

In this case we watch the distance between the updated weight in each round wt and
our target weight: the ground truth weight u. Both u and wt are probability distributions.
A natural way to measure their distance would be the relative entropy:

Φt = RE(u||wt) (15)

We want to show that at each round, this quantity is decreased by at least C, where
C is some constant we’re going to compute later. We now compute the difference between
Φt+1 and Φt:

Φt+1 − Φt =
∑

i

ui ln
ui

wt+1,i
−
∑

i

ui ln
ui

wt,i

=
∑

i

ui ln
wt,i

wt+1,i

=
∑

i

ui ln

(

Zt

eηytxt,i

)

=
∑

i

ui(ln Zt − ηytxt,i)

= ln Zt −
∑

i

uiηytxt,i

= ln Zt − ηyt(u · xt,)

≤ ln Zt − ηδ.

4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

eη y x
i

linear bound

Figure 1: Using Linear Function to Bound Exponential Function

The last inequality is because δ is the margin. Now we want to make estimations on Zt.
Let’s omit subscript t for simplicity. So Z means Zt, wi means wt,i, etc. We know that Z
is the normalization factor and can be computed as:

Z =
∑

i

wie
ηyxi . (16)

We’ll bound the exponential term by a linear function, as illustrated in figure (1):

eηx ≤
(

1 + x

2

)

eη +

(

1 − x

2

)

e−η, for − 1 ≤ x ≤ 1. (17)

Using this bound, we have:

Z =
∑

i

wie
ηyxi

≤
∑

i

wi

(

1 + yxi

2

)

eη +
∑

i

wi

(

1 − yxi

2

)

e−η

=
eη + e−η

2

∑

i

wi +
eη − e−η

2
y
∑

i

wixi

=
eη + e−η

2
+

eη − e−η

2
y(w · x)

≤ eη + e−η

2
.

The last inequality comes from the assumption that the master makes a wrong prediction
every time, so the second term is less than 0.

5

So we have:

Φt+1 − Φt ≤ ln Zt − ηδ

≤ ln

(

eη + e−η

2

)

− ηδ = −C.

So Φt is decreased by at least C = ln
(

2

eη+e−η

)

+ ηδ for each round, and Φ1 =
∑

i ln
ui

1/N =
∑

i ui ln(Nui) ≤ ∑

i ui lnN = lnN , so the total number of mistakes is bounded by:

#mistakes ≤ Φ1

C

≤ lnN

ηδ + ln
(

2

eη+e−η

) .

The inequality is proved. When we choose η = 1

2
ln(1+δ

1−δ), C = RE(1

2
− δ

2
||1

2
) ≥ δ2

2
, so the

bound becomes 2 lnN
δ2 . Proved.

5 Balanced Winnow Algorithm

How can we get rid of the assumption ui ≥ 0? What if some components of u are negative?
One “quick and dirty” trick is to double the size of N and add a complementary version of
each expert. For example:

xt = (1,−0.7, 0.32) −→ x
′

t = (1,−0.7, 0.32 | − 1, 0.7,−0.32)

u = (1, 0.2,−0.2) −→ u
′

= (1, 0.2, 0 | 0, 0, 0.2)

After this transformation, we preserved the norm: ||xt||∞ = ||x′

t||∞, ||u||1 = ||u′ ||1, we also
have u · xt = u

′ · x′

t. If we use w
+ and w

− to denote the original and duplicated parts of
vector w, the Winnow algorithm will have the following form:

Initialize: w+
1,i = w−

1,i = 1

2N
Predict: yt = sign(w+ · xt − w

− · xt)
Update:

if the prediction is right, then don’t change weights
if the prediction is wrong, then update as follows:

w+
t+1,i = w+

t,i
eηytxt,i

Zt

w−
t+1,i = w−

t,i
e−ηytxt,i

Zt

This algorithm is called the balanced Winnow algorithm.

6 A Comparison Between Perceptron Algorithm and Win-

now Algorithm

The major difference between these two algorithms are the way they update weights. They
also use different norms.

6

Perceptron Winnow / WMA

additive update multiplicative update

||xt||2 = 1 ||xt||∞ = 1
||u||2 = 1 ||u||1 = 1

analogous to SVM analogous to Boosting

7 Regression

We have been talking about classification problems for a while. In these problems, we try
to minimize the probability of our classifier making a mistake. For the next few lectures,
we will begin to talk about a different kind of problem.

Let’s start by looking at an example. A TV station wants to hire a meteorologist to
predict the weather. Two applicants, say Alice and Bob, made predictions on the next day’s
weather during the interview:

Alice said there is a 70% chance of raining tomorrow.
Bob said there is an 80% chance of raining tomorrow.
On the second day, it turned out that it did rain. The question is, which one should

we hire? This is a totally different problem than classification. What is complicated here is
that although it rained on the next day, we still don’t know the true probability of raining
on that day.

We introduce the following notations to formulate this problem:
Let x denote weather conditions.

y =

{

1 if rain
0 if not rain

We assume (x, y) pairs are random according to source distribution D, so (x, y) ∼ D. We
want to estimate

p(x) = Pr[y = 1|x] = E(y|x). (18)

But the question is that we can never observe p(x). Alice is giving hA(x) as an estimation
of p(x). Bob is also giving his estimation hB(x). We can only observe {x, hA(x), hB(x), y}
and we want to choose one from {hA(x), hB(x)} that is closer to p(x). We’ll discuss this in
more detail next time.

7

