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1 Introduction

Suppose H is a set of hypotheses and A is a learning algorithm that takes m training points
sampled i.i.d. from some (unknown) distribution D, and produces a consistent hypothesis h.
Then we saw last time that for any δ > 0, with probability at least 1− δ, the generalization
error of h is at most 1

m(log |H| + log 1
δ ).1

In this lecture we will see how to prove non-trivial bounds on the generalization error
when H is infinite. We will introduce the important concept of VC dimension, and see how
this purely combinatorial object plays an important role in learning.

In the last lecture, we defined the notion of ‘number of possible behaviors’ of a set
of hypotheses H on a set of size m. In binary classification (which we are dealing with),
a behavior on a set S is just a function mapping S to {±1}. Define ΠH(S) to be the
set of distinct behaviors on S, i.e., ΠH(S) = {〈h(x1), h(x2), . . . , h(xn)〉 : h ∈ H} where
S = {x1, . . . , xm}. Further define

ΠH(m) = max
|S|=m

|ΠH(S)|.

We saw, for instance, that when H is the set of positive half-lines, |ΠH(m)| = m+1 and

if H is the set of intervals, |ΠH(m)| = m(m+1)
2 + 1. The point here was that even though H

is infinite, the number of behaviors it can have on sets of size m is ‘small’. Our aim in this
lecture is essentially to show that this is what matters for learning – not the size of H.

More formally, we prove

Theorem 1. Suppose H is a set of hypotheses and A is a learning algorithm that takes m
training points sampled i.i.d. from some distribution D, and produces a consistent hypothesis

h. Then for any δ > 0, with probability at least 1 − δ, we have

errD(h) ≤ O
( ln |ΠH(2m)| + ln(1/δ)

m

)

.

2 The Proof

In this section, we prove Theorem 1. We use the so-called ‘double-sampling trick’, which
will be described shortly.

As in the proof of the finite H case, it suffices to bound the probability of the following
‘bad’ event B:

B : ∃h ∈ H such that h is consistent but errD(h) > ε.

Let us denote the training sample by S = {x1, x2, . . . , xm}. Also, let M(h, S) denote the
number of mistakes made by h on S. Now suppose S′ = {x′

1, x
′
2, . . . , x

′
m} is another sample

1We could also turn the bound around and see it as a question of how many examples do we need to

ensure an upper bound of some ε on the generalization error.



drawn i.i.d. from the same distribution D (the algorithm does not see this in some sense –
it is purely for purposes of the proof). Define the event

B′ : ∃h ∈ H such that h is consistent and M(h, S′) >
mε

2
.

Claim 1. If m > 8
ε , then Pr[B′|B] ≥ 1

2 .

Proof. Suppose h is a consistent hypothesis but errD(h) > ε. Since S′ is drawn i.i.d. from
D, E[M(h, S′)] ≥ εm. Further, M(h, S′) is the sum of i.i.d. binomial random variables,
so it is highly concentrated around it’s expectation. In particular it can be shown2 that
Pr[M(h, S′) ≤ εm/2] < 1

2 . This proves the claim.

Note that the claim immediately implies Pr[B] ≤ 2Pr[B′], because

Pr[B′]

Pr[B]
≥

Pr[B′ ∩ B]

Pr[B]
= Pr[B′|B] ≥

1

2
.

Thus it suffices to bound Pr[B′] (for clarity, recall that this probability is over choices of S
and S′). Given S and S′, consider the following random process SwapR.

1. For i from 1 to m, do the following:

2. Toss a coin. If you get heads, swap xi and x′
i, else do nothing.

Say we denote the new collections by T and T ′. Then the following is clear.
Claim 2. Suppose we pick S and S′ according to D and then perform SwapR. Then the sets
T and T ′ are identically distributed to S and S′.

Now suppose we define the event

B′′ : ∃h ∈ H such that h is consistent with T (equiv. M(h, T ) = 0) and M(h, T ′) >
mε

2
.

Claim 2 implies that Pr[B′′] = Pr[B′]. The first probability is over the choice of S, S′ and
the random bits of SwapR while the second is over choice of S, S′.

Now consider some h ∈ H. We claim that Pr
[

M(h, T ) = 0 ∧ M(h, T ′) > mε
2

∣

∣S, S′
]

≤

2−mε/2. Consider

h(x1) h(x2) . . . h(xn)

h(x′
1) h(x′

2) . . . h(x′
n)

First, note that if there is a column with both predictions wrong then M(h, T ) = 0 can
never happen and so we are done (the desired probability is 0). Similarly, if more than
(1 − ε/2)m of the columns have both predictions right, we are done since M(h, T ′) > mε

2
cannot happen. Thus at least r ≥ mε

2 columns have one right and one wrong prediction. If
we need M(h, T ) = 0, it must happen that in all such columns, SwapR must ensure that
the right prediction goes to the top and the wrong one goes to the bottom row. Thus the
probability is 2−r ≤ 2−mε/2.

So far we have not seen how the ‘number of behaviors’ |ΠH(m)| enters the picture. Our
final claim shows precisely this.
Claim 3. Pr[B′′] ≤ |ΠH(2m)|2−mε/2.

2We will see techniques for proving such ‘tail bounds’ in the next few lectures.
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Proof. Given a set S, define H′(S) ⊆ H to be a set of size |ΠH(S)| where we choose one
(representative) hypothesis for each different behavior of H on S. Then

Pr[B′′] = ES,S′

[

Pr
[

∃h ∈ H such that M(h, T ) = 0 ∧ M(h, T ′) >
mε

2

∣

∣ S, S′
]

]

= E

[

Pr
[

∃h ∈ H′(S ∪ S′) such that M(h, T ) = 0 ∧ M(h, T ′) >
mε

2

∣

∣ S, S′
]

]

≤ E

[

∑

h∈H′(S∪S′)

Pr
[

M(h, T ) = 0 ∧ M(h, T ′) >
mε

2

∣

∣ S, S′
]

]

≤ ΠH(2m)2−mε/2

This proves the claim.

We are almost done. Combining claims 1 and 3, we have Pr[B] ≤ δ whenever

2|ΠH(2m)|2−mε/2 ≤ δ

which is equivalent to saying

ε ≥ 2
( log |ΠH(2m)| + log(2/δ)

m

)

.

This finishes the proof of Theorem 1. We will now try to investigate the ‘growth function’
|ΠH(m)|. In the next lecture, we will prove the remarkable theorem that no matter what
the H, the function grows either as 2m or as md for some constant d (there is no other
behavior!).

Looking at the bound in Theorem 1, we see that these two cases correspond to being
able or unable to learn. We will make this connection precise in the next lecture.

3 Vapnik-Chervonenkis (VC) Dimension

As usual, let H denote a set of hypotheses over a set X.

Definition 1. A set Y ⊆ X is said to be shattered by H if for every function f : Y → {±1},
there exists h ∈ H such that f(y) = h(y) for all y ∈ Y .

Definition 2. The Vapnik-Chervonenkis (VC) dimension of H is defined to be the size of

the largest Y ⊆ X that is shattered by H.

Note that we get to pick the Y , so showing that VC dimension is at least d is in NP

while showing it is at most d is in some sense a co-NP problem. Now let us look at the VC
dimension of some typical hypothesis classes H.

Example 1. X = R, the real line and H is the set of positive half-lines. The VC dimension

is 1.

Proof. Clearly {x} can be shattered (by choosing half-lines starting before and after x we
get different behaviors). Also if x < y are two real numbers, then we can never get the
behavior 〈h(x) = +1, h(y) = −1〉. Thus no set of size > 1 can be shattered.

Example 2. X = R, the real line and H is the set of intervals. The VC dimension is 2.
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Proof. Here {x, y} can clearly be shattered. But if x < y < z are three real numbers
then h(x) = h(z) = +1 and h(y) = −1 can never occur, thus a set of size > 2 cannot be
shattered.

Example 3. X is the set of points in the plane and H is the set of axis parallel rectangles.

The VC dimension is 4.

Proof. Showing the VC dimension is at least 4 is easy – consider 4 points in the shape of a
diamond (say we look at (1, 0), (−1, 0), (0, 1), (0,−1)). It is clear this set can be shattered.
Now suppose we have a set of 5 points. Consider the bottom-most, top-most, left-most and
right-most points (they may coincide). We cannot have the behavior that h is +1 on these
points and −1 on the remaining. Thus no set of size ≥ 5 can be shattered.

Example 4. X = R
n and H is the set of half-spaces. The VC dimension is n + 1.

This will be left as an exercise on a homework.
Observe that in all the cases above, the VC dimension is in some sense, the ‘number

of parameters’ needed to describe the hypothesis (in the half-line case it is the starting
point, in an interval we need the two end-points, for an axis parallel rectangle we need
the x, y coordinates of the principal diagonal, and so on). This ‘thumb-rule’ is quite often
true, but not always. For instance, there are pathological examples in which the number of
parameters is one, but the VC-dimension is infinite.
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