
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Yuhui Luo February 11, 2008

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by H (the hypothesis class) if there exists an
algorithm A which for all concepts c ∈ C, all distributions D, and all ε > 0, δ > 0 takes m =
poly(1/ε, 1/δ, . . .) examples defined by the training set S = 〈(x1, c(x1)), · · · , (xm, c(xm))〉
and produces a hypothesis h ∈ H such that Pr[errD(h) ≤ ε] ≥ 1 − δ (the hypothesis is
ε-good).

In this model, ε is known as the error parameter, δ is known as the confidence param-
eter. errD(h) = Pr[h(x) 6= c(x)] is known as the true error or generalization error. And
1
m |{i : h(xi) 6= c(xi)}| is the training or empirical error. We also assume that every xi from
the training set and all the test points are drawn from the same target distribution D.

The benefit of a PAC learning model is that it actually makes a real connection to
learning. It captures what learning is: taking a set of examples and generalizing it. It can
learn to make predictions accurately.

2 A Simple Learning Problem

As an example, let’s look at a simple learning problem. Our domain, X is the real line.
Our concept class, C is the set of all positive half-lines, which are lines that separate the
real line into two halves: all the points to the left of the line are negatively labelled and all
the points to the right of the half-line are positively labelled.

Figure 1: A Simple Learning Problem

Given a set of labelled points, a valid hypothesis could be to find the place where the
examples transition from negative labels to positive labels, and place the half-line anywhere
in the transition region (see Figure 1). For example, we can place the half-line midway
between the right-most negative and left-most positive examples.

Is this a PAC learning algorithm? In particular, if it is a PAC algorithm, how many
examples do we need in order to ensure that this learning algorithm will be ε-good with
high probability?

Figure 2: The Region of Error

As seen in Figure 2, the region of error is the region between c and h: If we get any
points there, h will say it’s negative while c would say it’s positive. We can also have c
to the right of h, where a similar argument can be made due to symmetry. Now, we want
the error region to be at most ε. More precisely, we want the probability of a point from
our target distribution D falling into this region to be less than ε. So, when we talk about
distances, we’re not talking about the actual distance, but the distance with respect to the
probability distribution.

Now, let’s go back to the time before any data points are chosen (see Figure 3).

Figure 3: The Two Bad Events

We know that there exists some target concept c. And we know that there are two bad
events:

1. b+: The hypothesis h is more than ε to the right of the target concept c.

2. b-: The hypothesis h is more than ε to the left of the target concept c.

As long as those two events don’t happen with high probability, then we can say that h
is ε-good. Since these two events are symmetric, we only need to look at one of them at a
time.

Figure 4: Region of Probability ε

Figure 4 shows the b+ event and a region of probability ε to the right of c, called R+.
In this region, the probability mass between c and the edge of the region is ε. We want to
bound the probability of h ending up outside the region R+. If there’s even a single point

2

that falls in R+ – a positive example, since it falls to the right of c – then h will fall to the
left of that point and also be inside the region R+. Therefore, the only way for the bad
event to happen is if no points fall inside the R+ region. That is:

Pr[b+] ≤ Pr[x1 /∈ R+ ∧ · · · ∧ xm /∈ R+]
= Pr[x1 /∈ R+] · · ·Pr[xm /∈ R+]
= (1− ε)m

≤ e−εm.

Here, we use the assumption that all xi are i.i.d (independent and identically dis-
tributed), where the probability of xi falling in the region R+ is ε. We also make use
of the inequality 1 + x ≤ ex to obtain the last line of the result. Then:

Pr[h ε-bad] ≤ Pr[b+ ∨ b−]
≤ Pr[b+] + Pr[b−]
≤ 2e−εm

where the second line was obtained using the union bound and the third line was obtained
by symmetry. We want:

Pr[h ε-bad] ≤ δ.

Solving for m, we obtain:

m ≥ 1
ε

ln
2
δ
.

Therefore, if we have at least m ≥ 1
ε ln 2

δ examples, our algorithm is PAC-learnable. Solving
for ε, we can also say that with probability 1− δ, errD(h) ≤ 1

m ln 2
δ .

3 More Learning Problems

Figure 5: Interval Learning Problem

Now suppose we keep the same domain as the previous problem, but change the concept
class to be intervals instead, where each interval contains all the positively labelled examples
and all points outside the interval are considered negative (see Figure 5).

3

Figure 6: Interval Learning Problem

In this case, for the entire region of error to be less than ε, we can specify that the two
separate regions of error in Figure 6 each be less than ε/2. Now we can use the exact same
argument as our previous problem, though instead of two bad events, we now have four bad
events. This yields a bound of m ≥ 2

ε ln 4
δ .

Figure 7: A Learning Problem in R2

Now suppose we set our domain X = R2, and set our concept clas C = {axis-parallel
rectangles}. Suppose we use the same algorithm from our previous lecture: we take the
smallest rectangle that contains all the positive points and set that as our hypothesis. Since
it’s the smallest rectangle, we know that it must be contained inside the concept c. Then,
our regions of error are shown in Figure 7 and we want each to have an error less than ε/4.
Once again, we can then follow the same arguments as our previous learning problems to
derive a bound.

We can also extend this problem to Rn, where our concept class then becomes all axis-
parallel hyper-rectangles. In these problems, it is common to have a size parameter of the
concept class, n. Then, we will allow the number of examples to be polynomial in n as well
as the usual 1/ε and 1/δ.

4 Expected Correct (EC) Learning Model

A different learning model is the EC learning model, which instead of restricting the prob-
ability of error being greater than ε, restricts the expected value of the error.

In this model, a target concept class C is EC-learnable byH (the hypothesis class) if there
exists an algorithm A which for all concepts c ∈ C, all distributions D, and all α > 0 takes
m = poly(1/α, . . .) examples defined by the training set S = 〈(x1, c(x1)), · · · , (xm, c(xm))〉
and produces a hypothesis h ∈ H such that E[errD(h)] ≤ α.

4

Now, the question is: are the PAC and EC models equivalent? For two models to be
equivalent, anything which can be learned in one model must also be learnable in the other
model. So, if we are handed a PAC learning algorithm, then we should be able to use it to
create an EC learning algorithm and vice versa.

Figure 8: PAC to EC Model

In Figure 8, we are given a PAC model and we want to see if we can convert it to an
EC learning model. We can calculate the expected value of the error as follows:

E[err] = Pr[err > ε]E[err|err > ε] + Pr[err ≤ ε]E[err|err ≤ ε]
≤ δ + ε.

where we use the fact that Pr[err > ε] ≤ δ, E[err|err > ε] ≤ 1, Pr[err ≤ ε] ≤ 1 and
E[err|err ≤ ε] ≤ ε to obtain the final expression. Therefore, we can choose ε = δ = α/2
to obtain an EC learning model given a PAC learning model. A similar argument can be
made for the reverse.

5 A General Result

Back to the PAC learning model, we now want to know if there is a more general result
for showing that an algorithm is PAC-learnable. Can we use consistency to come up with
a general result on the number of examples we need?

Theorem. Suppose we are given a finite hypothesis space (i.e. |H| <∞). Say an algorithm
A finds a hypothesis hA ∈ H consistent with m examples, where m ≥ 1

ε

(
ln |H|+ ln 1

δ

)
.

Then, the hypothesis is ε-good. That is:

Pr[errD(hA) > ε] ≤ δ.

5

5.1 Dependence on |H|

Why does this general bound have a dependence on the size of H? Intuitively, we can say
that the more rules there are in the hypothesis space, the more opportunities there are for
us to latch onto a bad rule that works well for the training samples, but does not work well
for predicting the test cases.

Exercise: Everyone in the class writes down a 0 or a 1 for 10 training points and for 10
test points. This is matched against 20 random coin tosses Professor Schapire did before
class. The highest accuracy guess had a training error of 20%. This matches well with our
intuition that given many hypotheses, we will find a hypothesis that works very well with
the training data. However, the person who made the best guess for the training data ended
up with a test error of 60% when it came time to match the guesses against the test data.

5.2 Why is the Bound Logarithmic?

For the bound to be logarithmic, it essentially captures the complexity of the hypothesis
space. Let’s say we gave each rule a name (in binary), how many bits do we need?

Answer: log2 |H|.

Example 1: Suppose our hypothesis class consists of all monotone conjunctions. Here,
X = {0, 1}n and |H| = 2n. Therefore, m ≥ 1

ε (n ln 2 + ln 1/δ) provides an immediate bound
on the data we needed for the algorithm earlier presented for this class.

Example 2: Now suppose our hypothesis class, H = {DNF}. Then, |H| = 22n
. There-

fore, m ≥ 1
ε (2

n ln 2+ln 1/δ) and the bound is very poor (exponential) validating our intuition
that DNF is too rich a class to learn efficiently with a small amount of data.

6

