Link-based ranking
Part 2

Goal

• **Intuition:** when Web page points to another Web page, it confers status/authority/popularity to that page
• Find a measure that captures intuition

• Not just web linking
 – Citations in books, articles
 – Doctors referring to other doctors
Review: first measure PageRank

- Given a directed graph with \(n \) nodes
- Assign each node a score that represents its importance in structure
 - Call score PageRank: \(\text{pr}(\text{node}) \)

Conferring importance

Core ideas:
- A node should confer some of its importance to the nodes to which it points
 - If a node is important, the nodes it links to should be important
- A node should not transfer more importance than it has
- Address problems with:
 - Sinks (nodes with no edges out)
 - Cyclic behavior
Random walk model (review)

1. Move from node to linked neighbor with probability 1/outdegree
 Outdegree of a node = number of edges out of a node
2. Randomly jump to any node
 - Break cycles
 - Escape from sinks

Captured with:
\[pr_{\text{new}}(k) = \frac{\alpha}{n} + (1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right) \]

- \(\alpha \) parameter chosen empirically
- \(t_i \) outdegree of node \(i \)

Steady state probability of being at a node = \(pr(\text{node}) \)

Normalized?

- Would like \(\sum_{1 \leq k \leq n} (pr(k)) = 1 \)
- Consider \(\sum_{1 \leq k \leq n} (pr_{\text{new}}(k)) \)
 \[= \sum_{1 \leq k \leq n} \left(\frac{\alpha}{n} + (1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right) \right) \]
 \[= \alpha + (1-\alpha) \sum_{1 \leq k \leq n} \sum_{i \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right) \]
 \[= \alpha + (1-\alpha) \sum_{1 \leq i \leq n} \sum_{k \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right) \]

*inner sum \(\sum_{i} \) over incoming edges for one \(k \)
*inner sum \(\sum_{k} \) over outgoing edges for one \(i \)
Problem for desired normalization

• Have
 \[\sum_{1 \leq k \leq n} (pr_{\text{new}}(k)) = \alpha + (1-\alpha) \sum_{i \text{ with edge from } i} pr(i) \]

• Missing \(pr(i) \) for nodes with no edges from them
 – sinks!

• Solution: add \(n \) edges out of every sink
 – Edge to every node including self
 – Gives \(1/n \) contribution to every node

Gives desired normalization:
If \(\sum_{1 \leq k \leq n} (pr_{\text{initial}}(k)) = 1 \)
then \(\sum_{1 \leq k \leq n} (pr(k)) = 1 \)

Matrix formulation

• Let \(E \) be the \(n \) by \(n \) adjacency matrix
 \(E(i,k) = 1 \) if there is an edge from node \(i \) to node \(k \)
 \(= 0 \) otherwise

• Define new matrix \(L \):
 For each row \(i \) of \(E \) \((1 \leq i \leq n)\)
 If row \(i \) contains \(t_i \) > 0 ones, \(L(i,k) = (1/ t_i) E(i,k), 1 \leq k \leq n \)
 If row \(i \) contains 0 ones, \(L(i,k) = 1/n, 1 \leq k \leq n \)

• Vector \(pr \) of PageRank values defined by
 \[pr = (\alpha/n, \alpha/n, \ldots, \alpha/n)^T + (1-\alpha) L^T pr \]

• has a solution representing the steady-state values \(pr(k) \)
Calculation

• Choose α
 – No single best value
 – Page and Brin originally used $\alpha = .15$

• Simple iterative calculation
 ▪ Initialize $pr_{\text{initial}}(k) = 1/n$ for each node k
 • so $\sum_{1\leq k\leq n} (pr_{\text{initial}}(k)) = 1$
 ▪ $pr_{\text{new}}(k) = \alpha/n + (1-\alpha) \sum_{1\leq i\leq n} L(i,k)pr(i)$

• Converges
 – Has necessary mathematical properties
 – In practice, choose convergence criterion
 • Stops iteration

PageRank Observations

• PageRank can be calculated for any graph
• Google calculates on entire Web graph
• Huge calculation for Web graph
 – precomputed
 – 1998 Google:
 • 52 iterations for 322 million links
 • 45 iterations for 161 million links
• PageRank must be combined with query-based scoring for final ranking
 – Many variations
 – What Google exactly does secret
 – Can make some guesses by results
HITS
Hyperlink Induced Topic Search

- Second well-known algorithm
- By Jon Kleinberg while at IBM Almaden Research Center
- Same general goal as PageRank
- Distinguishes 2 kinds of nodes
 - Hubs: resource pages
 - Point to many authorities
 - Authorities: good information pages
 - Point to many hubs

Mutual reinforcement

- Authority weight node j: \(a(j) \)
 - Vector of weights \(a \)
- Hub weight node j: \(h(j) \)
 - Vector of weights \(h \)
- Update:
 \[
 a_{\text{new}}(k) = \sum_{i \text{ with edge from } i \text{ to } k} h(i)
 \]
 \[
 h_{\text{new}}(k) = \sum_{j \text{ with edge from } k \text{ to } j} a(j)
 \]
Matrix formulation

Steady state:
\[a = E^T h \quad a = E^T E a \]
\[h = E a \quad h = E E^T h \]

Interpretation:
- \(E^T E(i,j) \): number nodes point to both node i and node j
 - “Co-citation”
- \(EE^T(i,j) \): number nodes pointed to by both node i and node j
 - “Bibliographic coupling”

Iterative Calculation

\(a = h = (1, \ldots, 1)^T \)

While (not converged) \{
\[a_{\text{new}} = E^T h \]
\[h_{\text{new}} = E a \]
\[a = a_{\text{new}} / \|a_{\text{new}}\| \quad \text{normalize to unit vector} \]
\[h = h_{\text{new}} / \|h_{\text{new}}\| \quad \text{normalize to unit vector} \]
\}
Convergence

• Linear algebra - eigenvalues
• Kleinberg uses slightly different iteration and slightly different proof than in Intro to IR book
 – Normalization important
 \[a_0 = h_0 = (1, ... , 1)^T \]
 For kth iteration \{ \n \[a_k = \text{normalized} \ (E^T h_{k-1}) \]
 \[h_k = \text{normalized} \ (E a_k) \quad \text{uses new value of } a \]
\}
Then \[a_k = \text{normalized} \ ((E^T E)^{k-1} E^T a_0) \]
Then \[h_k = \text{normalized} \ ((EE^T)^k h_0) \]

General Theorem:
If \(M \) is a symmetric n by n matrix and \(v \) is a vector not orthogonal to the principal eigenvector \(w_1 \) of \(M \),
then the unit vector in the direction of \(M^k v \) converges to \(w_1 \) as \(k \) goes to infinity.

Application:
Since \(h_0 = (1, 1, ... 1)^T \), \(h_0 \) is not orthogonal to the principal eigenvector of \(EE^T \)
\[\Rightarrow h_k \text{ converges} \]
\[a_k \text{ similar but little more work because first vector } E^T a_0 \]
Use of HITS

- Actual use of HITS by IBM people was after find Web pages satisfying query:
 1. Retrieve documents satisfy query and rank by term-based techniques
 2. Keep top c documents: root set of nodes
 - c a chosen constant - tunable
 3. Make base set:
 1. Root set
 2. Plus nodes pointed to by nodes of root set
 3. Plus nodes pointing to nodes of root set
 4. Make base graph: base set plus edges from Web graph between these nodes
 5. Apply HITS to base graph

Results using HITS

- Documents ranked by authority score $a(doc)$ and hub score $h(doc)$
 1. Authority score primary score for search results
- Heuristics:
 - delete all links between pages in same domain
 - Keep only pre-determined number of pages linking into root set (~200)
- Findings (original paper)
 - Number iterations in original tests ~50
 - most authoritative pages do not contain initial query terms
 - Compare LSI "concepts"
Observations

• HITS can be applied to any graph
• Base graph much smaller than Web graph
• Kleinberg identified bad phenomena
 – Topic diffusion: generalizes topic when expand root graph to base graph
 • Want compilers - generalized to programming

HITS and clustering

• Non-principal eigenvectors of EE^T and E^TE have positive and negative component values
 – Denote a_{e2}, a_{e3}, \ldots matching h_{e2}, h_{e3}, \ldots
• For a matched pair of eigenvectors a_{ej} and h_{ej}
 – Denote k^{th} component of j^{th} eigenvector $a_{ej}(k)$ and $h_{ej}(k)$
 – Make a “community” of size c (a chosen constant):
 • Choose c pages with most positive $h_{ej}(k)$ - hubs
 • Choose c pages with most positive $a_{ej}(k)$ - authorities
 – Make another “community” of size c:
 • Choose c pages with most negative $h_{ej}(k)$ - hubs
 • Choose c pages with most negative $a_{ej}(k)$ - authorities
• Compare LSI
Eigenvalues and clustering

General class of techniques for clustering a graph using eigenvectors of adjacency matrix (or similar matrix) called

Spectral clustering

First described in 1973

More later, maybe …