3D Polygon
Rendering Pipeline
Adam Finkelstein & Tim Weyrich

Princeton University
COS 426, Spring 2008

p
3D Polygon Rendering 2

+ Many applications use rendering of 3D polygons
with direct illumination

-
Ray Casting Revisited &

+ For each sample ...
° Construct ray from eye position through view plane
° Find first surface intersected by ray through pixel
° Compute color of sample based on surface radiance

o °

oio o0:0:0:o0
oo ol eieie
oio o0oioioio
olieioioidilo

o0 ofeie0
oio oY E®iE\®

ox®e o ®

More efficient algorithms
utilize spatial coherence!

e M
3D Rendering Scenarios
+ Batch

° One image generated with as much quality as possible
for a particular set of rendering parameters
= Take as much time as is needed (minutes)
= Useful for photorealistism, movies, etc.

+ Interactive
° Images generated in fraction of a second (<1/10)

as user controls rendering parameters (e.g., camera)

= Achieve highest quality possible in given time

= Useful for visualization, games, etc.

rayview

4 N
3D Polygon Rendering A4
+ Many applications use rendering of 3D polygons
with direct illumination
J
4 N
3D Polygon Rendering A4

+ We can render polygons faster if we take
advantage of spatial coherence

oo ol eieie
oio o0oioioio
olieieoioidilo

o0 ofeie0
oio oYTE®iE® \®

ox®e o ®




-

3D Rendering Pipeline (for direct illumination)

~

3D Primitives

Modelin%
Transformation

Lighting

This is a pipelined
Transformation Sequence Of Operations
fectio to draw a 3D primitive

Transformation intO a 2D image

Clipping

I
Transformation

can
Conversion

2 g &d

Image

-

GPU Architecture

e

Birg

Xbox360, ATI

J

9

p
3D Rendering Pipeline (for direct illumination)

~

3D Primitives

Modelin%
Transformation

Lighting

This is a pipelined
Transformation Sequence Of Operations
fectio to draw a 3D primitive

Transformation intO a 2D image

Clipping

I
Transformation

can
Conversion

2 g &

Image

-

GPU Architecture

e

=)
i

Vertex Processing

Texture and
Fragment Processing

Z-Compare
and Blend

=t

GeForce 6 Series Architecture

¥

Memory Memory
Partition Partition

GPU Gems 2, NVIDL.

)

8

-

GPU Architecture

e

Birg

=)

i

I

Vertex

Programmable Vertex
Pi g (fp32)

Texture

Programmable Per-Pixel Memory
Math (fp32)

Data Fetch, fp16
Blending

GeForce 6 Series Architecture

GPU Gems 2, NVIDL.

)

10

-

3D Rendering Pipeline (for direct illumination)

s«
EAOAS

~

i

3D Primitives
Model in%
Transformation

Lighting

Viewing
Transformation

Projection
Transformation

Clipping

I‘—

i

i

Viewport.
Transformation

can
Conversion

I

Image

)
glvertex3£(0.0, 0.0, 0.0);
glvertex3£(1.0, 0.0, 0.0);
glvertex3£(1.0, 1.0, 1.0);
glVertex3£(0.0, 1.0, 1.0);
glEnd () ;

OpenGL executes steps
of 3D rendering pipeline
for each polygon




4 N

3D Rendering Pipeline (for direct illumination)

3D Primitives
Modelin:
Transformation

Lighting

Transform into 3D world coordinate system

Viewing
Transformation

i

jection
Transformation

Clipping

I
Transformation

can
Conversion

5 g
gl 22

8

+ S

Image

4 A

3D Rendering Pipeline (for direct illumination)

3D Primitives
Tranodeiing | Transform into 3D world coordinate system
Lighting llluminate according to lighting and reflectance

Viewil

Transformation]  1ransform into 3D camera coordinate system

Projection
Transformation

Clipping

Viewport
Transformation

can
Conversion

i

Image

s

~N

3D Rendering Pipeline (for direct illumination)

3D Primitives
Tranodeiing | Transform into 3D world coordinate system
Lighting llluminate according to lighting and reflectance

Viewing
Transformation

i

Transform into 3D camera coordinate system

Projection
Transformation

Transform into 2D camera coordinate system
Clipping Clip primitives outside camera’s view

Transformation

can
Conversion

L0

Image

4 N

3D Rendering Pipeline (for direct illumination)

3D Primitives
Tranodeiing ) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

414

Viewing
Transformation

jection
Transformation

Clipping

I
Transformation

can
Conversion

§ 7
g8z

8

3 S

Image

s

N
3D Rendering Pipeline (for direct illumination)

3D Primitives
Tranodeiing | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tramewing o] Transform into 3D camera coordinate system

Projection
Transformation

Transform into 2D camera coordinate system
Clipping

Viewport
Transformation

can
Conversion

0

Image

s

3D Rendering Pipeline (for direct illumination)

~N

3D Primitives
Tranodeiing | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

i

Viewin

Transformation ] 1ransform into 3D camera coordinate system

Projection
Transformation

Transform into 2D camera coordinate system
Clipping Clip primitives outside camera’s view
Transform into image coordinate system

Transformation

can
Conversion

A

Image




( 2\
3D Rendering Pipeline (or direct ilumination)
3D Primitives
1 -
Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system
Clip primitives outside camera’s view
Transform into image coordinate system
Draw pixels (includes texturing, hidden surface, ...)
Image )
19
( 2\
Transformations
p(x.y.2)
l 3D Object Coordinates Transformations map points from
Moo one coordinate system to another
lodeling
Transformation
3D World Coordinates
Viewing 3D Camera
Transformation Coordinates
3D Camera Coordinates ‘ 3D Object
Y _ Coordinates
PI‘O]}EC'IOI’I.
Transformation
2D Screen Coordinates
Viewport
Transformation
2D Image Coordinates 0302 r‘dl\i’r?zgllis
p,(xy’y‘)
J
21
( 2\
Viewing Transformation
+ Mapping from world to camera coordinates
° Eye position maps to origin
° Right vector maps to X axis
° Up vector maps to Y axis back
° Back vector maps to Z axis right
z
View
plane
Camera
y
X
World
J

23

( 2\
3D Rendering Pipeline (or girect ilumination)
3D Primitives
Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system
Clip primitives outside camera’s view
Transform into image coordinate system
Draw pixels (includes texturing, hidden surface, ...)
Image )
20
( 2\
Viewing Transformations
p(x.y.2)
l 3D Object Coordinates
Modeling
Transformation
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates Viewing Transformations
Pro#‘ection
Transformation
2D Screen Coordinates
Viewport
Transformation
2D Image Coordinates
p'(X.y’)
J
22
( 2\

Camera Coordinates

E

E\h

+ Canonical coordinate system
° Convention is right-handed (looking down -z axis)
° Convenient for projection, clipping, etc.

Camera up vector
y 1 mapsto Y axis

Camera back vector

maps to Z axis ~

Camera right vector
maps to X axis

(pointing out of page) z

X

24



Finding the viewing transformation
+ We have the camera (in world coordinates)

+ We want T taking objects from world to camera

pC=T p¥

+ Trick: find T taking objects in camera to world

pW_T—lpL
X' a b‘ c dl[x
Vi_|e S g Ry
2| | ok ||z
w m n o pl|lw
25
Viewing Transformations i
p(x,y,2)
l 3D Object Coordinates
Modeling
Transformation

l 3D World Coordinates

Viewing
Transformation
3D Camera Coordinates iewing Transformations

Progection
Transformation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates
p ’(X ’ ’ y ‘)

27

Taxonomy of Projections

Planar geometric
projections

i,

Parallel Perspective

Orthographic Oblique  One-point

Top Cabinet Two-point

(plan)

Front

elevation
Side

elevation

Axonometric  cayalier Three-point

Other

Isometric
Other

29

Finding the Viewing Transformatio

+ Trick: map from camera coordinates to world
° Origin maps to eye position
° Z axis maps to Back vector
° Y axis maps to Up vector
° X axis maps to Right vector

x' R U, B, E][x
' R, U, B, E|y
z' R. U, B, E/||z
w! R, U, B, E|||w

+ This matrix is 7' so we invertitto get T ... easy!

26

Projection i

+ General definition:
° Transform points in n-space to m-space (m<n)

* In computer graphics:
° Map 3D camera coordinates to 2D screen coordinates

28

Taxonomy of Projections

Planar geometric
projections

Perspective

Parallel

Orthographic Oblique  One-point

Top

(plan) Cabinet Two-point

Front Axonometric  cavalier Three-point
elevation
Side
elevation Other
Isometric
Other

30



Parallel Projection ol

+ Center of projection is at infinity
° Direction of projection (DOP) same for all points

31

Oblique Projections Xl

+ DOP not perpendicular to view plane

’ 7o =45 ‘ bl
Cavalier " Cabinet
(DOP o = 45°) (DOP ¢ = 63.4°)
Parallel Projection Matrix 0

+ General parallel projection transformation:

X, 1 0 Lcos¢p O]fx,
A 0 1 Lsing O]y,
z| oo o oz
w 00 0 1|1

35

Orthographic Projections O

+ DOP perpendicular to view plane

e
Side

32

Parallel Projection View Volume i

Parallelpiped
View Volume

\
7 v
Back
Plane
Plane
Taxonomy of Projections 0

Planar geometric
projections

Parallel
Orthographic Oblique  One-point

Top Cabinet Two-point
(plan)
Front
elevation
Side
elevation Other

Axonometric  cayalier Three-point

Isometric
Other

36



Perspective Projection

.

+ Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Center of
Projection

37

View
Plane

Back S

\

~) Projection
Reference
Point

39

Perspective Projection 4

+ Compute 2D coordinates from 3D coordinates
with similar triangles

x.y,2) -z

-D
-2 (0,0,0) z
(xD/z, yD/z) / View

Plane

4

Perspective Projection 3

* How many ?

3-Point 2-Point 1-Point
Perspective Perspective Perspective
38
Perspective Projection A

+ Compute 2D coordinates from 3D coordinates
with similar triangles

x.y,2) -z

-D
z (0,0,0) z

What are the coordinates
of the point resulting from
projection of (x,y,z) onto -y
the view plane?

40

Perspective Projection Matrix s
+ 4x4 matrix representation?
x,=xD/z,
yS=yL‘D/ZL'
z, =D
w, =1
Xy T |2
Yo ll 12 2 7 U
z |72 2 7?2
” 2?77?71

42



Perspective Projection Matrix s

+ 4x4 matrix representation?

.

x,=x.D/z, x, =x'"/w x'=x,
1 \J 1
yo=y.Dlz. y o =yiw Y=y,
z, =D z =z'/w Z'=z,
'_
w, =1 w=z/D
Xy 7?2 2?2 N|*
Yol 12 2 7 U
2 [T|? 7 2 2|z
2?2?22
s
43
Taxonomy of Projections i
Planar geometric
projections
Parallel Perspective
Orthographic Oblique  One-point

Top

(plan) Cabinet

Front
elevation

Side
elevation

Isometric
Other

Classical Projections

Front elevation

Isometric One-point perspective

Axonometric  cavalier

Two-point

Three-point

Other

45

Three-point perspective

47

Perspective Projection Matrix i
+ 4x4 matrix representation?
x,=xD/z, x, =x'"/w x'=x,
Yo=yDlz.  y=yiw Y=y,
z, =D z. =z'/w Z'=z,
w, =1 w=z/D
Xy 1 0 0 O0]f*
Yol _10 1 0 0fy
2|70 0 1 o]z
w| [0 0 /D o]

44

Perspective vs. Parallel

72
ok

+ Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel _~

P e

+ Parallel projection
+ Good for exact measurements
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistically looking

46

Viewing Transformations Summary

+ Camera transformation
° Map 3D world coordinates to 3D camera coordinates
° Matrix has camera vectors as rows

+ Projection transformation
° Map 3D camera coordinates to 2D screen coordinates
° Two types of projections:
= Parallel
= Perspective

48



-

N
3D Rendering Pipeline (for direct illumination)

i

3D Primitives
3D Modeling Coordinates

I‘—

Modelin%
Transformation
3D World Coordinates

Lighting
D World Coordinates

Transformation
D Camera Coordinates
Projectiol
Transformation
2D Screen Coordinates

<
T
=
3
]
© @

Clipping
2D Screen Coordinates

I
Transformation

2D Image Coordinates

@
=
8
+

Conversion
2D Image Coordinates
Image J
49
( N\
2D Rendering Pipeline
2D Primitives
|
. Clip portions of geometric primitives
Clipping residing outside the window
Viewport. Transform the clipped primitives
Transformation from screen to image coordinates
Fill pixels representing primitives
Conversion in screen coordinates
Image
9 J
51
( N\

Clipping

o),

+ Avoid drawing parts of primitives outside window
° Window defines part of scene being viewed
° Must draw geometric primitives only inside window

Screen Coordinates

53

-

N
3D Rendering Pipeline (for direct illumination)

i

1 2D Screen Coordinates

Clipping
2D Screen Coordinates
Viewport

2D Image Coordinates

Scan
Conversion
2D Image Coordinates

Image Y,
50
4 N\
2D Rendering Pipeline
2D Primitives
|
. Clip portions of geometric primitives
Clipping residing outside the window
!
Transform the clipped primitives
Transformation from screen to image coordinates
Fill pixels representing primitives
Conversion in screen coordinates
Image
9 J
52
4 N\

Clipping

o),

+ Avoid drawing parts of primitives outside window
° Window defines part of scene being viewed
° Must draw geometric primitives only inside window

Viewing
Window

54



Clipping

.

+ Avoid drawing parts of primitives outside window

° Points
° Lines
° Polygons
° Circles
° etc.
Viewing
Window
55
Line Clipping Lot
+ Find the part of a line inside the clip window
P7
P, ™~
\ PS/P4 P
P, Pg Pio
P, Py

Before Clipping

57

Cohen Sutherland Line Clipping i

+ Use simple tests to classify easy cases first
P7

Py [~
\ | e

P, Pg Pio

P P

59

Point Clipping i
+ Is point (x,y) inside the clip window?
Wy2 inside =
(x >= wxl) &&
(xy) (x <= wx2) &&
L] (y >= wyl) &&
(y <= wy2);
wyl
wx1 wx2
Window
56
Line Clipping Lot
+ Find the part of a line inside the clip window
P’;
P’g
P
P,— 4
P6

After Clipping

58

Cohen Sutherland Line Clipping

.

+ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P;
Bit 4
P ™~ p
PS/P4 8
P, / Pg Pio
— Bit 3
P Pg/

60



Cohen Sutherland Line Clipping

fo}

+ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

\ Bit 4

61

Cohen Sutherland Line Clipping

.

+ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P;
\ Bit 4
N P,
/ Pg Pio
Bit 3
e Pg///
Bit 1 Bit 2

63

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

P;

\ Bit 4

65

Cohen Sutherland Line Clipping

fo}

+ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P;
\ Bit 4
N
p,———Ps Pa
/ Pg Pio
Bit 3
e Pg///
Bit 1 Bit 2

62

Cohen-Sutherland Line Clipping

.

+ Compute interesections with window boundary for
lines that can’t be classified quickly

P7
\ Bit 4
N P,
/ P10
Bit 3
e Pg///
Bit 1 Bit 2

64

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

P7
\ Bit 4
\\r%
P10
yd Bit 3
o
Bit 1 Bit 2

66



Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

P7
\ Bit 4
N P,
P10
Bit 3
Pg///
Bit 1 Bit 2

67

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

P7
\\\=\\\\\ Bit 4
\\Pg
P10
Bit 3
wd
Bit 1 Bit 2

69

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

\0\ Bit 4

Bit 1 Bit 2

il

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

P7
\ Bit 4
N P,
P10
Bit 3
Pg///
Bit 1 Bit 2

68

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

\ Bit 4
\ P8
P10
Bit 3
Pg///
Bit 1 Bit 2

70

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2

72



Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2

73

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2

75

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2

7

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2

74

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2

76

Cohen-Sutherland Line Clipping

+ Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 3

Bit 1 Bit 2

78



Clipping
+ Avoid drawing parts of primitives outside window
° Points
° Lines
° Polygons
° Circles
° etc.
Polygon Clipping

+ Find the part of a polygon inside the clip window?

L

- A

After Clipping

81

Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time

L

TAQ

83

Polygon Clipping

+ Find the part of a polygon inside the clip window?

TAQ

Before Clipping

80

Sutherland Hodgeman Clipping i

+ Clip to each window boundary one at a time

TAQ

82

Sutherland Hodgeman Clipping f

.

+ Clip to each window boundary one at a time

L

- A

84



Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time

L

A

85

Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
2 P1

Window
Boundary

87

Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TTT— P,

Window
Boundary

89

Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time

L

VAN

-

86

Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
2 P1

Window
Boundary

88

Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TTT— P,

Window
Boundary

90



Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TTT— P,

Window
Boundary p’ Inside
Outside
PS
P5
P4
Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TTT— P,

Window
Boundary p’ Inside
Outside
PS
P5
P4
Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TT—— P,

Window
Boundary p’ pr Inside

Outside

95

Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TTT— P,

Window
Boundary p’ Inside
Outside
PS
P5
P4
Clipping to a Boundary

+ Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
TTT— P,

Window
Boundary p’ pr Inside
Outside
PS
P5
P4
94
2D Rendering Pipeline
2D Primitives
|
A Clip portions of geometric primitives
Cllplplng residing outside the window
Viewport Transform the clipped primitives
Transformation from screen to image coordinates
|
Scan Fill pixels representing primitives
COﬂVfl'Sion in screen coordinates

Image

96



e N
Viewport Transformation
+ Transform 2D geometric primitives from
screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)
Screen Image
——
Viewport
J
97
e N
Summary of Transformations
P(X.y,Z)
l 3D Object Coordinates
Modeling Modeling transformation
Transformation
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates iewing transformations
Projection
Trans#ormation
2D Screen Coordinates
T e wport Viewport transformation
2D Image Coordinates
xy)
px.y )
99
e N

Next Time

3D Primitives
3D Modeling Coordinates

I‘_

Modelin%
Transformation
3D World Coordinates

Lighting

D World Coordinates

Transformation
D Camera Coordinates
jectior
Transformation
2D Screen Coordinates

o
2] <
S =
2
5
S a
@ @

Clipping

2D Screen Coordinates

i P,

Transformation
2D Image Coordinates

@
=
8
=3

e Scan Conversion!
Conversion
2D Image Coordinates

Image )

101

p
Viewport Transformation

E\ )

+ Window-to-viewport mapping

Screen Coordinates Image Coordinates

wy2 Window w2 Viewport
o/ \
(wx,wy) (vx,vy)
wyl vyl
WX e——————————— wx2 VX ——— vx2

< 4§

vxl + (wx - wxl) * (vx2 - vxl) / (wx2 - wxl);
vyl + (wy - wyl) * (vy2 - vyl) / (wy2 - wyl);

98

p
Summary

3D Primitives
3D Modeling Coordinates
Modelin%
Transformation
3D World Coordinates

I‘_

Lighting
D World Coordinates

Transformation
D Camera Coordinates

<
T
=
3
]
© @

Projection
Transformation
2D Screen Coordinates
Clipping

2D Screen Coordinates

I
Transformation

2D Image Coordinates

@

b3
8

=3

Viewing
can_ Window
Conversion
2D Image Coordinates
Image

i

100



