

Parametric & Implicit **Surfaces**

Adam Finkelstein & Tim Weyrich **Princeton University** COS 426, Spring 2008

3D Object Representations

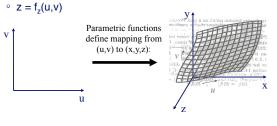
- · Points
 - ° Range image
 - Point cloud
- Solids
 - Voxels
 - ° BSP tree
 - ° CSG ° Sweep
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit
- High-level structures
 - Scene graph
 - Application specific

Surfaces

- · What makes a good surface representation?
 - Accurate
 - ° Concise
 - o Intuitive specification
 - ° Local support
 - o Affine invariant
 - Arbitrary topology
 - Guaranteed continuity ° Natural parameterization
 - ° Efficient display
 - ° Efficient intersections

Parametric Surfaces

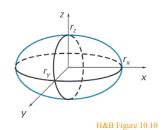
- · Boundary defined by parametric functions:
 - $\circ x = f_v(u,v)$
 - $y = f_v(u,v)$



FvDFH Figure 11.42

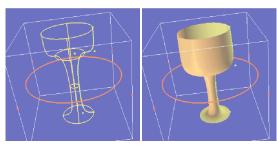
Parametric Surfaces

- · Boundary defined by parametric functions:
 - $\circ x = f_x(u,v)$
 - $\circ y = f_v(u,v)$
 - \circ z = f_z(u,v)
- · Example: ellipsoid
 - $x = r_x \cos\phi \cos\theta$
 - $y = r_v \cos \phi \sin \theta$ $z = r_z \sin \phi$

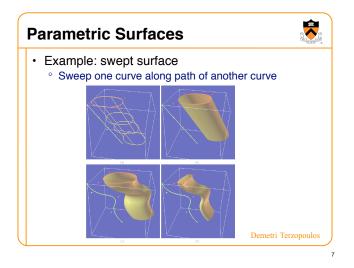


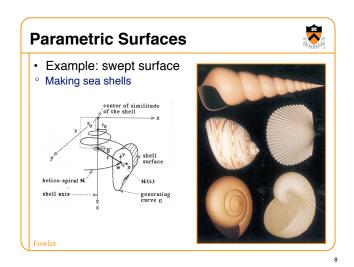
Parametric Surfaces

- · Example: surface of revolution
 - ° Take a curve and rotate it about an axis



Demetri Terzopoulos

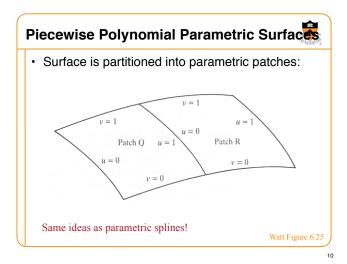




Parametric Surfaces

• How do we describe arbitrary smooth surfaces with parametric functions?

• SOFTIMALE H&B Figure 10.46



Parametric Patches

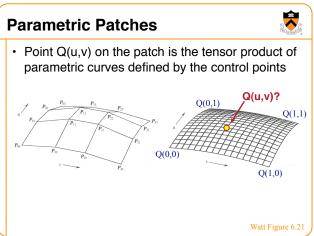
• Each patch is defined by blending control points

Parametric Patches

• Each patch is defined by blending control points

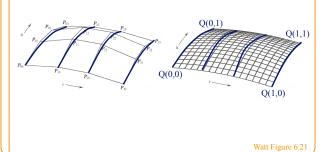
Same ideas as parametric curves!

Fydet Figure 11.44



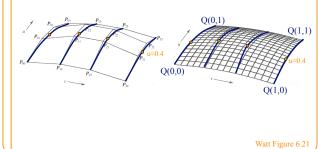
Parametric Patches

• Point Q(u,v) on the patch is the tensor product of parametric curves defined by the control points



Parametric Patches

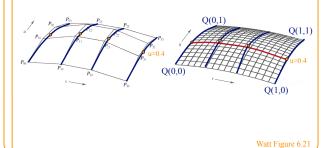
 Point Q(u,v) on the patch is the tensor product of parametric curves defined by the control points



itt i igure 0.2 i

Parametric Patches

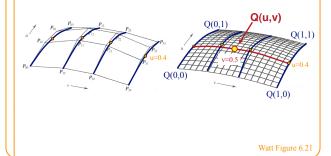
 Point Q(u,v) on the patch is the tensor product of parametric curves defined by the control points



15

Parametric Patches

 Point Q(u,v) on the patch is the tensor product of parametric curves defined by the control points



16

Parametric Bicubic Patches

Point Q(u,v) on any patch is defined by combining control points with polynomial blending functions:

$$Q(u,v) = \mathbf{U}\mathbf{M} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} \mathbf{M}^{\mathsf{T}} \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{U} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}$$

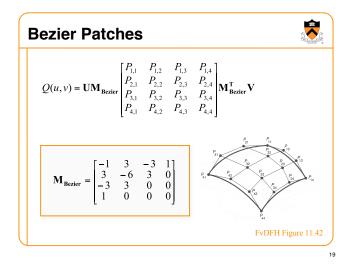
Where M is a matrix describing the blending functions for a parametric cubic curve (e.g., Bezier, B-spline, etc.)

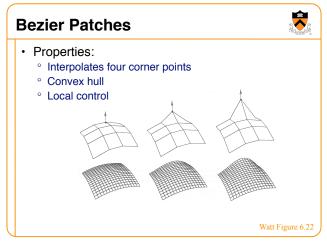
B-Spline Patches

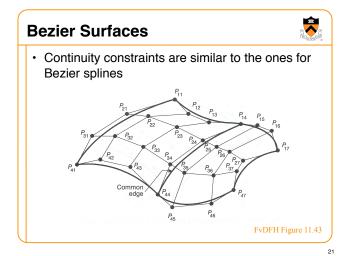
$$Q(u,v) = \mathbf{UM_{B-Spline}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} \mathbf{M_{B-Spline}^T \mathbf{V}}$$

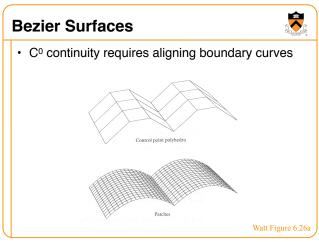
$$\mathbf{M}_{\mathbf{B-Spline}} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 \end{bmatrix}$$

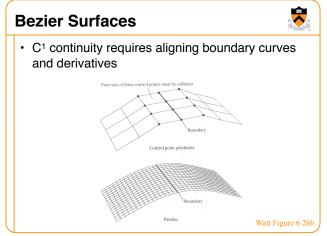
Watt Figure 6.28

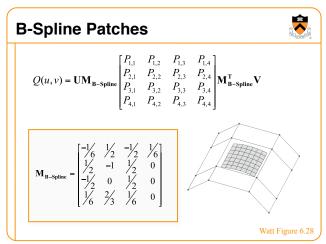












Parametric Surfaces

- · Advantages:
 - Easy to enumerate points on surface
 - ° Possible to describe complex shapes
- · Disadvantages:
 - ° Control mesh must be quadrilaterals
 - ° Continuity constraints difficult to maintain
 - · Hard to find intersections

3D Object Representations

- · Points
 - Range image
 - ° Point cloud
- · Solids
 - Voxels
 - BSP treeCSG
 - Sweep
- Surfaces
 - ° Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit
- High-level structures
 - ° Scene graph
 - Application specific

25

_

Represent surface with function over all space

• Surface defined implicitly by function

Kazhdan

27

Kazhdan

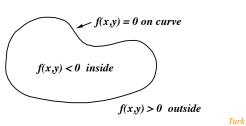
Implicit Surfaces

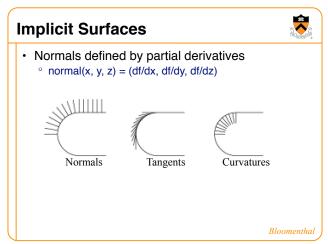
• Surface defined implicitly by function:

• f (x, y, z) = 0 (on surface)

• f (x, y, z) < 0 (inside)

• f (x, y, z) > 0 (outside)



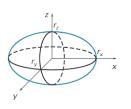


Implicit Surface Properties

(1) Efficient check for whether point is inside

° Evaluate f(x,y,z) to see if point is inside/outside/on

$$\left(\frac{x}{r_x}\right)^{\frac{2}{j}} + \left(\frac{y}{r_y}\right)^{\frac{2}{j}} + \left(\frac{z}{r_z}\right)^{\frac{2}{j}} - 1 = 0$$



H&B Figure 10.10

Implicit Surface Properties

(2) Efficient surface intersections

Substitute to find intersections

Ray:
$$P = P_0 + tV$$

Sphere: $IP - OI^2 - r^2 = 0$

Substituting for P, we get: $IP_0 + tV - Ol^2 - r^2 = 0$

Solve quadratic equation:

 $at^2 + bt + c = 0$

where:

$$a = 1$$

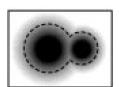
 $b = 2 \text{ V} \cdot (P_0 - O)$

 $c = IP_0 - CI^2 - r^2 = 0$

Implicit Surface Properties

(3) Efficient boolean operations (CSG)

° Union, difference, intersect



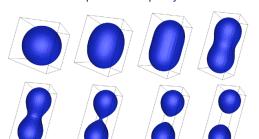
Difference

Bloomenthal

Implicit Surface Properties

(4) Efficient topology changes

° Surface is not represented explicitly!



Implicit Surface Properties

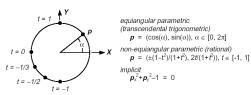
(4) Efficient topology changes

Surface is not represented explicitly!

Bloomenthal

Comparison to Parametric Surfaces

- Implicit
 - ° Efficient intersections & topology changes
- Parametric
 - ° Efficient "marching" along surface & rendering



Implicit Surface Representations

- S Commence of the commence of
- · How do we define implicit function?
 - ° Algebraics
 - ° Blobby models
 - ° Skeletons
 - Procedural
 - ° Samples
 - · Variational

Implicit Surface Representations

- · How do we define implicit function?
 - > Algebraics
 - ° Blobby models
 - ° Skeletons
 - · Procedural
 - ° Samples
 - · Variational

37

38

Algebraic Surfaces

- · Implicit function is polynomial
 - $^{\circ}$ f(x,y,z)=ax^d+by^d+cz^d+dx^{d-1}y+dx^{d-1}z+dy^{d-1}x+...

 $\left(\frac{x}{r_x}\right)^{\frac{2}{r}} + \left(\frac{y}{r_y}\right)^{\frac{2}{r}} + \left(\frac{z}{r_z}\right)^{\frac{2}{r}} - 1 = 0$ r_z r_z

00

Algebraic Surfaces

- · Most common form: quadrics
 - $f(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fxz+2gx+2hy+2jz+k$
- Examples
 - ° Sphere
 - ° Ellipsoid
 - ° Torus
 - ° Paraboloid
 - · Hyperboloid

Meno

40

Algebraic Surfaces

· Higher degree algebraics

Cubic

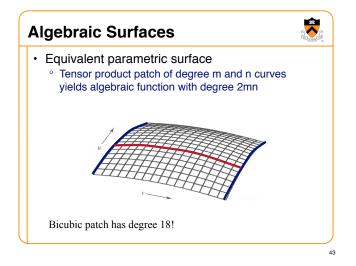
Quartic

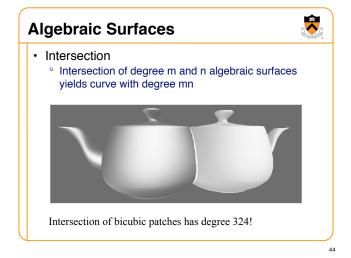
Degree six

Algebraic Surfaces

- Function extends to infinity
 - ° Must trim to get desired patch (this is difficult!)

4





Implicit Surface Representations

• How do we define implicit function?

• Algebraics

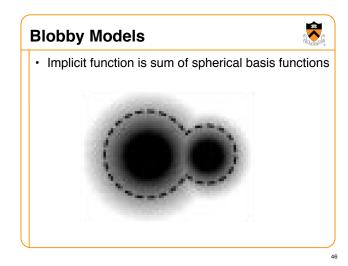
• Blobby models

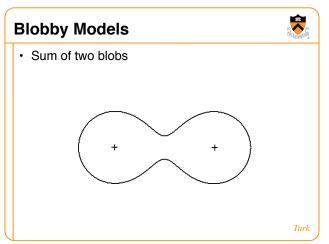
• Skeletons

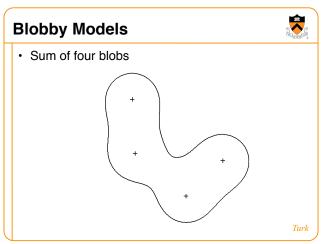
• Procedural

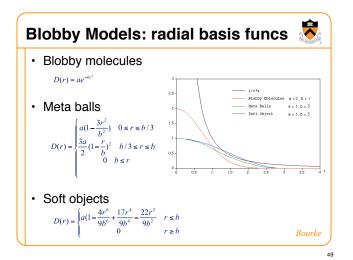
• Samples

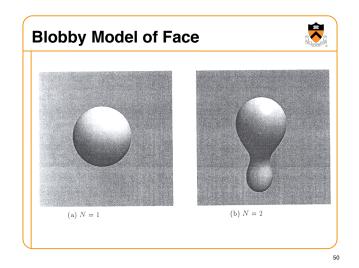
• Variational



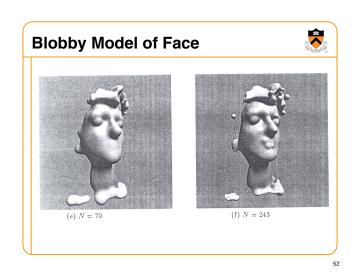


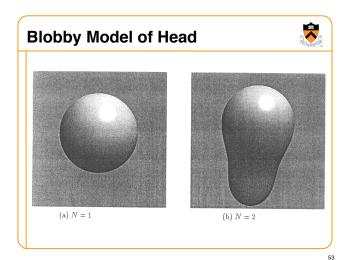


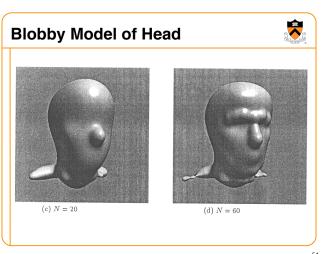


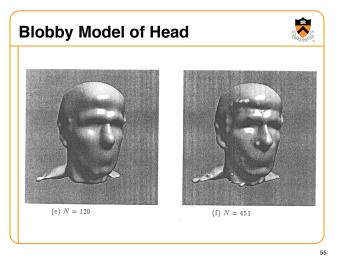


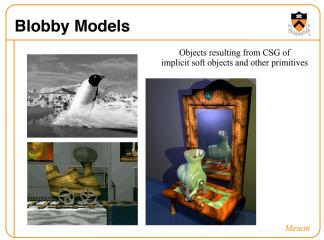
Blobby Model of Face (c) N = 10

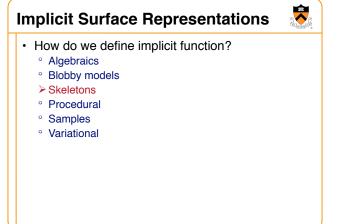


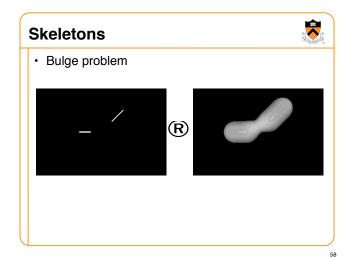








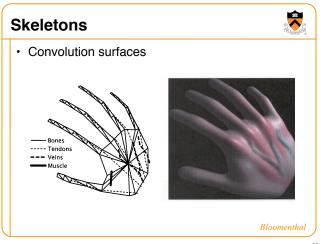




Skeletons

• Bulge problem

R



Implicit Surface Representations

- · How do we define implicit function?
 - Algebraics
 - ° Blobby models
 - ° Skeletons
 - ➤ Procedural
 - ° Samples
 - Variational

Procedural Implicits

• f(x,y,z) is result of procedure

• Example: Mandelbrot set

H&B Figure 10.100

Implicit Surface Representations

- · How do we define implicit function?
 - Algebraics
 - Blobby models
 - ° Skeletons
 - · Procedural
 - ➤ Samples
 - Variational

Sampled Functions

- · Most common example: voxels
 - ° Interpolate samples stored on regular grid
 - ° Isosurface at f(x,y,z) =0 defines surface

6

00

Sampled Functions

· Acquired from simulations or scans

Airflow Inside a Thunderstorm
(Bob Wilhelmson,
University of Illinois at Urbana-Champaign)

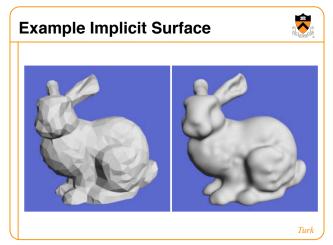
Visible Human

Implicit Surface Representations

- · How do we define implicit function?
 - Algebraics
 - ° Blobby models
 - ° Skeletons
 - Procedural
 - ° Samples

> Variational





68

Implicit Surface Summary

- · Advantages:
 - ° Easy to test if point is on surface
 - ° Easy to compute intersections/unions/differences
 - ° Easy to handle topological changes
- · Disadvantages:
 - ° Indirect specification of surface
 - $^{\circ}\,$ Hard to describe sharp features
 - ° Hard to enumerate points on surface
 - » Slow rendering

Summary				Service Control
Feature	Polygonal Mesh	Implicit Surface	Parametric Surface	Subdivision Surface
Accurate	No	Yes	Yes	Yes
Concise	No	Yes	Yes	Yes
Intuitive specification	No	No	Yes	No
Local support	Yes	No	Yes	Yes
Affine invariant	Yes	Yes	Yes	Yes
Arbitrary topology	Yes	No	No	Yes
Guaranteed continuity	No	Yes	Yes	Yes
Natural parameterization	No	No	Yes	No
Efficient display	Yes	No	Yes	Yes
Efficient intersections	No	Yes	No	No