

Image Compositing & Morphing

Adam Finkelstein & Tim Weyrich Princeton University COS 426, Spring 2008

Image Processing

- · Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation
- Filtering
 - o Blur
 - o Detect edges
 - o Sharpen
 - o Emboss
 - o Median

- Quantization
 - o Uniform Quantization
 - o Floyd-Steinberg dither
- · Warping
 - o Scale
 - o Rotate o Warp
- Combining
 - o Composite
 - o Morph

2

Image Processing

- Pixel operations
 - o Add random noise
 - o Add Juminano
 - o Add contrast o Add saturation
- ____
- Filtering
 - o Blui
 - Detect edges
 - o Sharnen
 - o Embos
 - o Median

- Quantization
 - o Uniform Quantization
 - o Floyd-Steinberg dither
- Warping
 - 0--1-
 - o Rotate
 - o Warp
- Combining
 - o Composite
 - o Morph

Image Compositing

- · Combine images
 - o Separate image into "elements"
 - o Generate independently
 - o Composite together
- Applications
 - o Cel animation
 - o Chroma-keying
 - o Blue-screen matting

Cel Animation

- · Classical animation technique (Disney)
- Superimposition of different layers on translucent films

Blue-Screen Matting

- Composite foreground and background images
 - o Create background image
 - o Create foreground image with blue background
 - o Insert non-blue foreground pixels into background

Problem: no partial coverage!

Semi-Transparent Objects

• Suppose we put A over B over background G

o How much of B is blocked by A? α_A o How much of B shows through A $(1-\alpha_A)$ o How much of G shows through both A and B? $(1-\alpha_A)(1-\alpha_B)$

12

Image Processing

- Pixel operations
- o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation
- Filtering
 - o Blur
 - o Detect edges
 - o Sharper
 - o Emboss
 - o Mediar

- Quantization
 - o Uniform Quantization
 - o Floyd-Steinberg dither
- Warping
 - o Scale
 - o Rotate
 - o Warn
- Combining
- o Composite
- o Morph

Cross-Dissolving

• Blend images with "over" operator
o alpha of bottom image is 1.0
o alpha of top image varies from 0.0 to 1.0

blend(i,j) = (1-t) src(i,j) + t dst(i,j) $(0 \le t \le 1)$ src
blend
dst t = 0.0 t = 0.5 t = 1.0

Image Morphing
 Combines warping and cross-dissolving
 src
 warp
 warp
 dst
 t = 0.0
 t = 0.5

Image Morphing

• Hard part is defining warp to intermediate images
o Aim to align features
o Aim to preserve shapes

Alexa

Morphing Pseudocode

 $GenerateAnimation(Image_0, L_0[...], Image_1, L_1[...])$ begin foreach intermediate frame time t do for i = 1 to number of line pairs do L[i] = line t-th of the way from $L_0[i]$ to $L_1[i]$ $Warp_0 = WarpImage(Image_0, L_0, L)$ $Warp_1 = WarpImage(Image_1, L_1, L)$ foreach pixel p in FinalImage do Result(p) = (1-t) Warp₀ + t Warp₁

end end

COS426 Examples

Jon Beyer

More Advanced Image Morphing

· Automatic methods to avoid shape deformations during interpolating warp

Linear Interpolation

As Rigid As Possible Shape Interpolation

More Advanced Image Morphing

· "As rigid as possible" shape interpolation

Summary

- · Image compositing
 - o Alpha channel
 - o Porter-Duff compositing algebra
- · Image morphing
 - o Warping
 - o Compositing

Summary

- · Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation
- Filtering
 - o Blur
 - o Detect edges
 - o Sharpen
 - o Emboss
 - o Median

- Quantization
 - o Uniform Quantization
 - o Floyd-Steinberg dither
- Warping
 - o Scale
 - o Rotate
 - o Warp
- · Combining
 - o Composite
 - o Morph

Next Time: 3D Modeling

Норре

33

_