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What is an Image?

+ Animage is a discrete array of samples
representing a continuous 2D function
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Sampling Theory

+ How many samples are enough?
o0 How many samples are required to represent a given
signal without loss of information?
o What signals can be reconstructed without loss for a
given sampling rate?
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o Aliasing
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Sampling Theory
+ How many samples are enough to avoid aliasing?
o0 How many samples are required to represent a given

signal without loss of information?
o What signals can be reconstructed without loss for a
given sampling rate?
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Sampling Theorem

+ Asignal can be reconstructed from its samples,
if the original signal has no frequencies
above 1/2 the sampling frequency - Shannon

+ The minimum sampling rate for bandlimited
function is called “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.
The frequency is called the bandwidth.

Spectral Analysis i

+ Frequency domain:
o Function: F(u)
o Filtering: multiplication

+ Spatial domain:
o Function: f(x)
o Filtering: convolution
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Any signal can be written as a
sum of periodic functions.

Fourier Transform 4

 Fourier transform:

F(u)= ff(x)e'izmdx
—00
 Inverse Fourier transform:

f(x) — }F(u)eHZnuxdu

Image Processing
+ Quantization
o Uniform Quantization
o Floyd-Steinberg dither

+ Pixel operations
0 Add random noise
o0 Add luminance
0 Add contrast

0 Add saturation * Warping
0 Scale
+ Filtering o Rotate
o Blur o) Warp
o Detect edges o
o Sharpen ° : Comb|n|ng
o Emboss o Composite
0 Median 0 Morph
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Adjusting Brightness
+ Simply scale pixel components
0 Must clamp to range (e.g., 0to 1)
<§”
Ky
Original Brighter
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Image Processing
+ Quantization
o Uniform Quantization
o Floyd-Steinberg dither
+ Warping
0 Scale
+ Filtering o Rotate
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o Detect edges .
o Sharpen Combmmg
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Linear Filtering

+ Convolution
o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
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Adjusting Contrast

+ Compute mean luminance L for all pixels
o luminance = 0.30%r + 0.59*g + 0.11*b

+ Scale deviation from L for each pixel component
0 Must clamp to range (e.g., 0 to 1)

More Contrast

Original
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Linear Filtering
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+ Convolution
o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
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Linear Filtering
+ Convolution
o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
® =
Filter
Input Image Output Image
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Adjust Blurriness

+ Convolve with a filter whose entries sum to one
o Each pixel becomes a weighted average of its neighbors
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Sharpen

+ Sum detected edges with original image
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Linear Filtering
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+ Convolution
o Each output pixel is a linear combination of input pixels
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Edge Detection
+ Convolve with a filter that finds differences
between neighbor pixels
XY Yl
Original Detect edges
-1 -1 -1
Filter=[—l +8 —1}
-1 -1 -1
J
e A
Emboss

+ Convolve with a filter that highlights gradients
in particular directions
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Non-Linear Filtering

+ Each output pixel is a non-linear function of input
pixels in neighborhood (filter depends on input)
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Quantization

+ Reduce intensity resolution
o Frame buffers have limited number of bits per pixel
o Physical devices have limited dynamic range

255 | 150 | 75 [
255 [ 150 | 75 0 0

255 [ 150 | 75 0 (0

255 | 150 | 75 0 (o

255 | 150 | 75 0 1y

Blue channel
255|150 [ 75 | 0 [o

Green channel

255|150 | 75 0

Red channel
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Uniform Quantization

+ Images with decreasing bits per pixel:

i {

2 bits 1 bit

8 bits

Notice contouring.
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Image Processing

+ Quantization
o Uniform Quantization
o Floyd-Steinberg dither

+ Warping
0 Scale
o Rotate
o Warp

+ Combining
o Composite
o Morph
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Uniform Quantization

P(x, y) = round(I(x, y) )
where round() chooses nearest
value that can be represented.

I(x,y)

P(x,y)

I(x,y) P(xy)
(2 bits pér pixel)
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Reducing Effects of Quantization

+ Dithering
o Random dither
o Ordered dither
o Error diffusion dither

+ Halftoning
o Classical halftoning
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Dithering i

+ Distribute errors among pixels
o Exploit spatial integration in our eye
o Display greater range of perceptible intensities

Original Uniform Floyd-Steinberg
(8 bits) Quantization Dither
(1 bit) (1 bit)
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Random Dither A
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Originl Unifo Random
(8 bits) Quantization Dither
(1 bit) (1 bit)
Ordered Dither F
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+ Bayer’s ordered dither matrices

4D, , + D,(1,HU 4D, , + D,(1,2)U

D - %"' , (LD " %"' ,(1,2) %

" 14D, , + D,(2,)HU 4D , + D,(2,2)U

%"' ,(2,D) " %"’ ,(2,2) "

5 7013 5

301 [3 1|1 91
D2=[0 2] Pis

12 414 6
0 8 2 10
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Random Dither A0

+ Randomize quantization errors
o Errors appear as noise

P(x,y)
P(x,y)

I(x.y) I(x,y)
P(x, y) = round( I(x, y) + noise(X,y) )
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Ordered Dither AL

+ Pseudo-random quantization errors
o Matrix stores pattern of threshholds

1=x modn

L 3 1
j=ymodn D, =
e =1(x,y) - trunc(I(x,y)) 0 2]
threshold = (D(i,j)+1)/(n>+1)
if (e > threshold)
P(x,y) = ceil(I(x, y)) 0 15 2/5 35 45 1
else I:I:l:l:l:l
POy =foor1y) | guhd
Ordered Dither i

Original Random Ordered
(8 bits) Dither Dither
(1 bit) (1 bit)
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Error Diffusion Dither F

.

+ Spread quantization error over neighbor pixels
o Error dispersed to pixels right and below
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Reducing Effects of Quantization :%:

+ Dithering
o Random dither
o Ordered dither
o Error diffusion dither

» Halftoning
o Classical halftoning
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Classical Halftoning

47

Error Diffusion Dither A

Original Random Ordered
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Floyd-Steinberg
(8 bits) Dither Dither Dither
(1 bit) (1 bit) (1 bit)
Classical Halftoning

+ Use dots of varying size to represent intensities
o Area of dots proportional to intensity in image

e @ .
e O .
e O .
e @ '
I(x,y) P(x,y)
Halftone patterns L0

+ Use cluster of pixels to represent intensity
o Trade spatial resolution for intensity resolution

0 1 2 3 4

0=1<02 02=1<04 0.4=1<06 0.6=1<08 08=1=10

Q: In this case, would we use four “halftoned” pixels
in place of one original pixel?
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Image Processing

+ Warping
o Scale
o Rotate
o Warp

+ Combining
o Composite
o Morph
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Image Processing

+ Image processing is a resampling problem

I
it

Resampling
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Aliasing

* In general:
o Artifacts due to under-sampling or poor reconstruction

+ Specifically, in graphics:

o Spatial aliasing
o Temporal aliasing

Under-sampling Figure 14.17 FYDFH )
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Image Processing

+ Consider reducing the image resolution

1/4 resolution

Original image
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Sampling Theorem

+ Asignal can be reconstructed from its samples,
if the original signal has no frequencies
above 1/2 the sampling frequency - Shannon

[Aliasing will occur if the signal is under—sampled]

Under-sampling Figure 14.17 FYDFH )

52

-

Spatial Aliasing

+ Artifacts due to limited spatial resolution

p

(@) | o (@)
(@) o (@)
(@) o (@)
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Spatial Aliasing

+ Artifacts due to limited spatial resolution

“Jaggies”

55

s

Temporal Aliasing

+ Artifacts due to limited temporal resolution
o Strobing
o Flickering
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Temporal Aliasing

+ Artifacts due to limited temporal resolution
o Strobing
o Flickering

59

p
Temporal Aliasing

+ Artifacts due to limited temporal resolution
o Strobing
o Flickering
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Temporal Aliasing

+ Artifacts due to limited temporal resolution
o Strobing
o Flickering
J
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Antialiasing

+ Sample at higher rate
o Not always possible
o Doesn’t always solve problem

+ Pre-filter to form bandlimited signal
o Form bandlimited function using low-pass filter
o Trades aliasing for blurring
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Image Processing o

l Real world

Discrete samples (pixels)

Reconstructed function

Transform

Transformed function

Bandlimited function

Discrete samples (pixels)

Display
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Image Processing o

Discrete samples (pixels)

Discrete Samples

63

Image Processing o

Transform
Transformed function

Transformed Function
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Image Processing

l Real world

Image Processing

Reconstruct
Reconstructed function

Image Processing

Bandlimited function

Continuous Function

Reconstructed Function

Bandlimited Function
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Image Processing

1]

Discrete samples

Discrete samples (pixels)
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Ideal Bandlimiting Filter

Frequency domain

+ Spatial domain

| Sine(x) = sinx
I
VA v‘ ‘Uf\/\/\/w
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Image Processing

Display
Display
. . =
Practical Image Processing
+ Finite low-pass filters

l Real world
o Point sampling (bad)
o Triangle filter

o Gaussian filter

Discrete samples (pixels)

Reconstructed function

Transform

Transformed function
Bandlimited function

Discrete samples (pixels)

Display
Convolution Convolution with a Triangle Filter :%:
+ Spatial domain: output pixel is weighted sum of + Example 1:

pixels in neighborhood of input image

o Pattern of weights is the “filter” i Filter

ii Filter I
. i Iil} 1]
U
Input Output

il

Input
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Convolution with a Triangle Filter w Convolution with a Triangle Filter

o),

+ Example 1: + Example 1:

0.5

uzsi jn.zs Filter 0.2 025 Fl|tel'

ulll | 1

t t
Input Output Input Output
Convolution with a Triangle Filter :%: Convolution with a Triangle Filter
+ Example 1: + Example 1:
n.zsio‘sjo.zs Filter 25 A 0.25 Fllter
Lil} |' |H1
t t
Input Output Input Output
Convolution with a Triangle Filter :%: Convolution with a Triangle Filter
+ Q: What if the filter runs off the end? + Example 1:
033 A Filt
i i Filter Ail *
ARRNRN 1 IH‘L
t t
Input Output Input Output
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Convolution with a Triangle Filter w
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+ Q: what if the filter is not centered on a sample?

Input Output
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Convolution with a Triangle Filter @

o),

+ Example 2:

w"’i” i“sm Filter
N n
in U |
t

t
Input Output
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Convolution with a Gaussian Filter

+ Example 4:
VAN
111 l l N %&/@&
Input Output
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Convolution with a Triangle Filter

+ Example 2:

0.40,
0.35 i
ols : : o Filter

Input Output

80

Convolution with a Triangle Filter

+ Example 3 (triangle filter of radius 1):

\
)

Input Output
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Image Processing

[

+ Warping
0 Scale
o Rotate
o Warp

+ Combining
o Composite
o Morph
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Scaling

E\ )

| More on this next Iecture!|

1/4X
resolution

+ Resample with triangle or Gaussian filter

EY

resolution
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Summary

E\ )

+ Image filtering
o Compute new values for image pixels based on
function of old values

+ Halftoning and dithering
o Reduce visual artifacts due to quantization
o Distribute errors among pixels
» Exploit spatial integration in our eye

+ Sampling and reconstruction
o Reduce visual artifacts due to aliasing
o Filter to avoid undersampling
» Blurring is better than aliasing
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