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What is an Image?

• An image is a discrete array of samples

representing a continuous 2D function 

Continuous function Discrete samples
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Sampling and Reconstruction
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Sampling and Reconstruction

Figure 19.9 FvDFH
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Sampling Theory

• How many samples are enough?
o How many samples are required to represent a given 

signal without loss of information?

o What signals can be reconstructed without loss for a 

given sampling rate?

Reconstructed function

Original function
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Sampling Theory

• What happens when use too few samples?
o Aliasing

Figure 14.17 FvDFH
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Spectral Analysis

• Spatial domain:
o Function: f(x)

o Filtering: convolution

• Frequency domain:
o Function: F(u)

o Filtering: multiplication

Any signal can be written as a 

sum of periodic functions.
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Fourier Transform

Figure 2.6 Wolberg
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Fourier Transform

• Fourier transform:

• Inverse Fourier transform:
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Sampling Theorem

• A signal can be reconstructed from its samples, 

if the original signal has no frequencies 

above 1/2 the sampling frequency - Shannon

• The minimum sampling rate for bandlimited 

function is called “Nyquist rate”

A signal is bandlimited if its

highest frequency is bounded.

The frequency is called the bandwidth.
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Image Processing

• Pixel operations
o Add random noise

o Add luminance

o Add contrast

o Add saturation

• Filtering
o Blur

o Detect edges

o Sharpen

o Emboss

o Median

• Quantization
o Uniform Quantization

o Floyd-Steinberg dither 

• Warping
o Scale

o Rotate

o Warp

• Combining
o Composite

o Morph
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Adjusting Brightness

• Simply scale pixel components
o Must clamp to range (e.g., 0 to 1) 

Original Brighter

19

Adjusting Contrast

• Compute mean luminance L for all pixels
o luminance = 0.30*r + 0.59*g + 0.11*b

• Scale deviation from L for each pixel component
o Must clamp to range (e.g., 0 to 1) 

Original More Contrast

L
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Linear Filtering

• Convolution
o Each output pixel is a linear combination of input pixels 

in neighborhood with weights prescribed by a filter

Input Image

Filter

Output Image
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Adjust Blurriness

• Convolve with a filter whose entries sum to one
o Each pixel becomes a weighted average of its neighbors

Original

Blur Filter =
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Edge Detection

• Convolve with a filter that finds differences 

between neighbor pixels 

Original Detect edges

Filter =
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Sharpen

• Sum detected edges with original image 

Original Sharpened

Filter =
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Emboss

• Convolve with a filter that highlights gradients

in particular directions

Original Embossed

Filter =
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Non-Linear Filtering

• Each output pixel is a non-linear function of input 

pixels in neighborhood (filter depends on input)

Original Oil Stain Glass
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Image Processing

• Pixel operations
o Add random noise

o Add luminance

o Add contrast

o Add saturation

• Filtering
o Blur

o Detect edges

o Sharpen

o Emboss

o Median

• Quantization
o Uniform Quantization

o Floyd-Steinberg dither 

• Warping
o Scale

o Rotate

o Warp

• Combining
o Composite

o Morph
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Quantization

• Reduce intensity resolution
o Frame buffers have limited number of bits per pixel

o Physical devices have limited dynamic range
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Uniform Quantization

P(x, y) = round( I(x, y) )

    where round() chooses nearest

    value that can be represented.

I(x,y)

P
(x

,y
)

P(x,y)
(2 bits per pixel)

I(x,y)
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Uniform Quantization

8 bits 4 bits 2 bits 1 bit 

Notice contouring.

• Images with decreasing bits per pixel:
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Reducing Effects of Quantization

• Dithering
o Random dither

o Ordered dither

o Error diffusion dither

• Halftoning
o Classical halftoning
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Dithering

• Distribute errors among pixels
o Exploit spatial integration in our eye

o Display greater range of perceptible intensities

Uniform
Quantization

(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Original
(8 bits)
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Random Dither

• Randomize quantization errors
o Errors appear as noise

P(x, y) = round( I(x, y) + noise(x,y) )

I(x,y)

P
(x

,y
)

I(x,y)

P
(x

,y
)

38

Random Dither

Uniform
Quantization

(1 bit)

Random 
Dither
(1 bit)

Original
(8 bits)
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Ordered Dither

• Pseudo-random quantization errors
o Matrix stores pattern of threshholds

i = x mod n

j = y mod n

e = I(x,y) - trunc(I(x,y))

threshold = (D(i,j)+1)/(n2+1)

if (e > threshold) 

 P(x,y) = ceil(I(x, y))

else 

 P(x,y) = floor(I(x,y))

0 11/5 2/5 3/5 4/5

thresholds
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Ordered Dither

• Bayer!s ordered dither matrices
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Ordered Dither

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither 
(1 bit)

42



Error Diffusion Dither

• Spread quantization error over neighbor pixels
o Error dispersed to pixels right and below

Figure 14.42 from H&B
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Error Diffusion Dither

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither 
(1 bit)

Floyd-Steinberg
Dither 
(1 bit)
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Reducing Effects of Quantization

• Dithering
o Random dither

o Ordered dither

o Error diffusion dither

!Halftoning
o Classical halftoning
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Classical Halftoning

• Use dots of varying size to represent intensities
o Area of dots proportional to intensity in image

P(x,y)I(x,y)
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Classical Halftoning

From Town Topics, Princeton
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Halftone patterns

• Use cluster of pixels to represent intensity
o Trade spatial resolution for intensity resolution

Figure 14.37 from H&B

Q: In this case, would we use four “halftoned” pixels 

 in place of one original pixel?
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Image Processing

• Pixel operations
o Add random noise

o Add luminance

o Add contrast

o Add saturation

• Filtering
o Blur

o Detect edges

o Sharpen

o Emboss

o Median
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o Uniform Quantization

o Floyd-Steinberg dither 

• Warping
o Scale

o Rotate
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• Combining
o Composite

o Morph
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Image Processing

• Consider reducing the image resolution

Original image 1/4  resolution

50

Image Processing

Resampling

• Image processing is a resampling problem
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Sampling Theorem

• A signal can be reconstructed from its samples, 

if the original signal has no frequencies 

above 1/2 the sampling frequency - Shannon

Figure 14.17 FvDFHUnder-sampling

Aliasing will occur if the signal is under-sampled
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Aliasing

• In general:
o Artifacts due to under-sampling or poor reconstruction

• Specifically, in graphics:
o Spatial aliasing

o Temporal aliasing

Figure 14.17 FvDFHUnder-sampling

53

Spatial Aliasing

• Artifacts due to limited spatial resolution
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Spatial Aliasing

• Artifacts due to limited spatial resolution

“Jaggies”
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Temporal Aliasing

• Artifacts due to limited temporal resolution
o Strobing

o Flickering
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Temporal Aliasing
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Antialiasing

• Sample at higher rate
o Not always possible

o Doesn!t always solve problem

• Pre-filter to form bandlimited signal
o Form bandlimited function using low-pass filter

o Trades aliasing for blurring
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Image Processing
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Image Processing
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Image Processing
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Ideal Bandlimiting Filter

• Frequency domain

• Spatial domain

Figure 4.5 Wolberg

0    fmax
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Practical Image Processing

• Finite low-pass filters
o Point sampling (bad)

o Triangle filter

o Gaussian filter
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Convolution

• Spatial domain: output pixel is weighted sum of 

pixels in neighborhood of input image
o Pattern of weights is the “filter”

Input Output

Filter
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Convolution with a Triangle Filter

• Example 1:

Input Output

Filter
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Convolution with a Triangle Filter

• Example 1:

Input Output
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Convolution with a Triangle Filter
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Convolution with a Triangle Filter

• Q: What if the filter runs off the end?

Input Output

Filter
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Convolution with a Triangle Filter

• Example 1:

Input Output

Filter
0.67

0.33
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Convolution with a Triangle Filter

• Q: what if the filter is not centered on a sample?

Input Output

Filter
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Convolution with a Triangle Filter

• Example 2:

Input Output
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Convolution with a Triangle Filter

• Example 3 (triangle filter of radius 1):

Input Output

Figure 2.4 Wolberg

Filter
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Convolution with a Gaussian Filter

• Example 4:

Input Output

Figure 2.4 Wolberg

Filter
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Image Processing

• Pixel operations
o Add random noise

o Add luminance

o Add contrast

o Add saturation

• Filtering
o Blur

o Detect edges

o Sharpen

o Emboss

o Median

• Quantization
o Uniform Quantization

o Floyd-Steinberg dither 

• Warping
o Scale

o Rotate

o Warp

• Combining
o Composite

o Morph
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Scaling

• Resample with triangle or Gaussian filter

Original 1/4X 
resolution

4X 
resolution

More on this next lecture!
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Summary

• Image filtering
o Compute new values for image pixels based on 

function of old values  

• Halftoning and dithering
o Reduce visual artifacts due to quantization

o Distribute errors among pixels

» Exploit spatial integration in our eye

• Sampling and reconstruction
o Reduce visual artifacts due to aliasing

o Filter to avoid undersampling

» Blurring is better than aliasing
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