1 Logistic regression

We can use the same type of machinery (as linear regression) to do classification. We have the same graphical model as in linear regressions, as below.

![Graphical model for logistic regression](image)

Figure 1: Graphical model for logistic regression (same as the graphical model for linear regression).

Problems of binary classification with linear regression (in which $y_n \sim N(\beta^T x, \sigma^2)$): (1) it will predict something other than 0 or 1, (2) a single outlier can affect greatly the model. (Note: In classification, y_n is either zero or one; not drawn from Gaussian.)

Model y as Bernoulli:

$$p(y|x) = \mu(x)^y (1 - \mu(x))^{y-1}$$

The parameters to the Bernoulli is a function for x. What μ should be used?

1. $\mu(x) = \beta^T x$: No, because $\mu(x)$ has to be within 0 and 1
2. $\mu(x) = \text{logistic}(\eta(x))$: maps $R \rightarrow (0, 1)$

logistic function: $\mu(x) = \frac{1}{1 - e^{-\eta(x)}}, \eta(x) = x^T \beta$

Note:

1. $\eta(x) \sim \infty, \mu(x) \sim 1$
2. \(\eta(x) \sim -\infty, \mu(x) \sim 0 \)

This specifies the model: \(y_n \sim Bernoulli(\mu(x)) \), where \(\mu(x) \) is defined above.

The logistic regression model implicitly places a "separating hyperplane" in the input space, and the conceptual line indicates where the probability to be 1/2 (for binary classification). (Only the closest data points matter, as in SVM)

The MLE of \(\beta \) focuses on the point near the boundary.

Finding the MLE of \(\beta \):

\[
\hat{\beta} = \arg \max_{\beta} \log p(y_{1..N}|x_{1..N}, \beta), \text{ where data are } \{(x_n, y_n)\}_{n=1}^N, y_n \in 0, 1
\]

\[
L = \log p(y_{1..N}|x_{1..N}, \beta)
\]

\[
= \sum_{n=1}^N \log p(y_n|x_n, \beta)
\]

\[
= \sum_{n=1}^N \log(\mu(x_n)^{y_n}(1 - \mu(x_n))^{1-y_n}) \quad \text{(We have suppressed the dependence on } \beta)\]

\[
= \sum_{n=1}^N y_n \log \mu(x_n) + (1 - y_n) \log(1 - \mu(x_n))
\]

First we calculate the derivative with respective to \(\beta_i \):

\[
\frac{dL_n}{d\beta_i} = \sum_{n=1}^N \frac{dL_n}{d\mu(x_n)} \frac{d\mu(x_n)}{d\beta_i}
\]

term#1: \(\frac{dL_n}{d\mu(x_n)} = \frac{y_n}{\mu(x_n)} - \frac{(1-y_n)}{1-\mu(x_n)} \)

term#2: \(\frac{d\mu(x_n)}{d\beta_i} = \frac{d\mu_n}{d\eta_n} \frac{d\eta_n}{d\beta_i} = \mu_n (1 - \mu_n) x_{ni} \)

Let \(\mu_n \) be \(\mu(x_n) = \frac{1}{1+e^{-\beta^T x_n}} \)

Let \(\eta_n \) be \(\log \frac{\mu_n}{1-\mu_n} \) (inverse of logistic function)

Then \(\frac{d\mu_n}{d\eta_n} = \mu_n (1 - \mu_n) \)

From the term#1 and term#2 above, we have:

\[
\frac{dL_n}{d\beta_i} = \sum_{n=1}^N \left(\frac{y_n}{\mu_n} - \frac{1-\mu_n}{1-\mu_n} \right) \mu_n (1 - \mu_n) x_{ni} = \sum_{n=1}^N (y_n - \mu_n) x_{ni}
\]

\[
E[y_n | x_n, \beta] = p(y_n = 1 | x_n, \beta) = \mu(x_n) = \mu_n, \text{ so } \frac{dL_n}{d\beta_i} = \sum_{n=1}^N (y_n - E[y_n | x_n, \beta]) x_{ni}
\]

Regression: \(L = \sum_{n=1}^N y_n \mu_n + (1 - y_n)(1 - \mu_n) + \|\beta\|_q \)

Connection to Naive Bayes:
Figure 2: Generative model.

Figure 3: Discriminative model.

Note: When you see more training data, you’ll see more outliers that might affect Naive Bayes, but not logistic regression or SVM.