
Software Explorations

THE BIG SQUEEZE
BY JON BENTLEY

English text has a lot of redundancy. People are pretty
good at squeezing out redundancy and then expanding it
back again. That’s why we can read advertisements like
this:

WASH DC Lg furn hse avail Jan 93. Move-in cond! 3
stories, form din rm (almost nu china incld), ball rm,
fam rm, fin bsmt w/sep entr, wd flrs, fpls, lg encl yrd
w/vu, xcel loc nr pk, bulletprf wndws, w/many charm
architect details.

Data compression is important for computers, too.
Squeezing data can reduce the size of disk files, cut tele-
phone transmission costs, and increase the effective
bandwidth of video channels. In this column we’ll study
compression techniques by tackling a venerable prob-
lem.

The Problem

Let’s start with the rules of the game. Our problem is
to see how much we can squeeze a dictionary. We don’t
need to implement compression and expansion pro-
grams. Our task is only to measure the effect of the
compression — prototyping should always precede
building. We can use any widely available UNIX tool.

Our dictionary is really a sorted word list: it contains
71661 words, one word per line, for a total of 691752
characters. There is no additional information, such as
pronunciation, definition, or etymology. All characters
are lower-case letters. We’ll soon see the first few lines
of the dictionary. I made the dictionary by translating all
capital letters in my system’s dictionary to lower case,
deleting words that contain nonalphabetic characters,
and then removing duplicate words:

tr ’A-Z’ ’a-z’ </usr/dict/words |
grep -v ’[ˆa-z]’ | uniq >dict.in

Exercise 1. Before you read further, jot down some
methods that you might use to compress the dictio-
nary, and estimate the effectiveness of each. All-in-all,
by what factor do you think you could squeeze the dic-
tionary?

The clean and precise rules identify this task as a
classroom exercise, but similar problems arise in a host
of applications. A list of English words is a critical com-
ponent in programs like text editors and spelling check-
ers. A compressed dictionary takes less space to store,

Software Explorations — Galley 2

less time to transmit over communication lines, and is
often faster to read from disk.

Quick and a Fair Code, Five Bits

Each character in the dictionary is represented on my
machine by an 8-bit byte. But 8 bits can represent
28 = 256 different characters, and we are wasting them
on just 27 different characters (26 letters and newline).
Because 25 = 32, we can represent our dictionary using a
5-bit code. This will reduce the space required by the
dictionary to just 62.5% of the original representation.

According to the rules of our game, we’ve solved the
problem. We have described a scheme and analyzed its
performance. We could leave the encoding and decod-
ing programs as ‘‘implementation details’’ that are out-
side the scope of this exercise. (The best programmers I
know have big lazy streaks right down the middle of their
backs.)

Exercise 2. Implement programs to encode and
decode 5-bit characters.

But for consistency with later programs (and for use in
later pipelines), I wanted to have a program that would
tell how many bits a file uses under a five-bit encoding in
a command like this:

bitcost 5 dict.in

Here is a shell implementation of bitcost:

expr $1 "*" ‘wc -c $2‘

The -c tells word count to count the number of charac-
ters; the backquotes cause the output to be placed in the
command line. The expr program evaluates its argu-
ments as an arithmetic expression.

Exercise 3. Write a bitcost program that reads its
standard input if it is not given a second argument.
Try implementing bitcost using other tools, such as
Awk or ls. Extend bitcost to check whether there
are at most 2bits distinct characters in the file.

Common Prefix Elimination

A common technique in data compression is ‘‘differen-
tial coding’’. If we are transmitting a series of similar
objects, we send only the differences between objects.
In television images, for instance, where large chunks of
background are unchanged we may transmit only the
changes from the last screen image.

Because the words in the dictionary are sorted, a typi-
cal word has many letters in common with its predeces-
sor. We’ll therefore represent each word by a count of
the letters it has in common with its predecessor followed
by the letters that differ. The original dictionary is shown
on the left, and the encoded version is on the right:

Software Explorations — Galley 3

a 0a
aardvark 1ardvark
aardwolf 4wolf
aaron 3on
aaronic 5ic
ab 1b
aba 2a
abaca 3ca
abaci 4i
aback 4k

...

The third line asserts that the word ‘‘aardwolf’’ has 4 let-
ters in common with ‘‘aardvark’’, and then the letters
‘‘wolf’’.

Here is an Awk implementation of the preflen pro-
gram to perform prefix-length encoding:

{ for (i = 1; substr($1, i, 1) ==
substr(last, i, 1); i++) ;

print i-1 substr($1, i)
last = $1

}

Because there is no pattern, the action in braces is exe-
cuted for each input line. The for loop in the first two
lines sets i to the number of characters that the input
word has in common with the last word. The next line
writes the encoded line, and the final line sets last to
the current input word.

Awk is a fine implementation language for this task:
the code is compact and easy to understand. It is also a
little slow: about four minutes on a VAX 8550 (a machine
with a few MIPS). Throughout the rest of this exercise
we’ll ignore execution speed, but first a tempting diver-
sion.

Exercise 4. Implement the preflen function in a dif-
ferent language. How does its length and speed com-
pare to the Awk version?

Here is an Awk program to decode the encoded file:

{ i = 0 + $1 # int at start of line
s = substr(s, 1, i)
print s substr($1, length(" " i))

}

A C version isn’t a lot more complicated; you might enjoy
writing it.

Table 1 describes the effectiveness of various com-
pression schemes. We see that the prefix length encod-
ing gives a reduction to about 52% of the original size.

Exercise 5. Study the performance of this compres-
sion method on your /usr/dict/words. Browse the
output file, and gather statistics on it.

One of the great things about data compression
schemes is that we can ‘‘mix-and-match’’ them. The

Software Explorations — Galley 4

alphabet now has 37 characters (26 letters, 10 digits and
newline), so we’ll have to go from a 5-bit to a 6-bit code.
Table 1 shows that if we use the pipeline preflen |
bitcost 6 then we achieve a compression to about
39%.

Both Sides Now

If prefix length encoding is good, then maybe suffix
length encoding is even better. The hard way to solve
this problem is to write a special-purpose program that
sorts the words using right-to-left order and then com-
putes the common suffix length right-to-left. An easier
solution is to use the common UNIX program rev which
reverses the characters on each line.

Exercise 6. Implement rev in your favorite language.

We can compress the dictionary with this pipeline

rev <dict.in | sort | preflen >cmprsd

and expand it with this pipeline:

unpreflen <cmprsd | rev | sort >dict.in

Table 1 shows that suffix compression gives a reduction
to 53.4%, which is a tad worse than prefix compression.
At least our stroll down this blind alley was short.

Exercise 7. This pipeline attempts to do both prefix
and suffix compression:

preflen | rev | sort |
preflen | bitcost 8

Can you spot the problem with it? Characterize the
conditions required by the various pipes in this column.

Variable-Length Codes

In a variable-length code, common symbols are
assigned short codes. In English, ‘‘e’’ is the most com-
mon letter and ‘‘z’’ is the least common. Morse code
therefore represents ‘‘e’’ by the succinct ‘‘dot’’ while ‘‘z’’
is ‘‘dash dash dot dot’’. English words represent a kind
of variable-length code: common words tend to be short.
In Section 6.2.2 of Sorting and Searching (described in
Further Reading), Knuth presents the 31 most common
English words; ‘‘the’’, ‘‘of’’, ‘‘and’’, ‘‘to’’ and ‘‘a’’ (all tiny
words) head the list. Long words aren’t as frequent;
when was the last time you used ‘‘electroencephalo-
graphic’’ in a conversation?

A Huffman code represents common symbols by short
bit strings and rare symbols by long bit strings. In the
original (uncompressed) dictionary, the most common
characters are newline (11.56%) and ‘‘e’’ (10.77%), while
the least common are ‘‘q’’ (.18%) and ‘‘j’’ (.17%). Figure
1 shows a tree representation of the Huffman code for
the letters in that dictionary. A left branch in the tree rep-
resents a 0 and a right branch represents a 1. Thus the
letter ‘‘e’’ is represented by the 3-bit string ‘‘000’’ while ‘‘j’’

Software Explorations — Galley 5

__
_ ___ __

COMPRESSION PIPELINE Bits Kbytes Bits/ Bytes/ % of Compression
Letter Word Original Factor_ __

bitcost 8 5534016 691.8 8.00 9.65 100.00 1.00
bitcost 5 3458760 432.3 5.00 6.03 62.50 1.60
preflen bitcost 8 2862736 357.8 4.14 4.99 51.73 1.93
preflen bitcost 6 2147052 268.4 3.10 3.75 38.80 2.58
rev sort preflen bitcost 8 2956424 369.6 4.27 5.16 53.42 1.87
hufcost 2959010 369.9 4.28 5.16 53.47 1.87
preflen hufcost 1611022 201.4 2.33 2.81 29.11 3.44
preflen subs bitcost 8 2424784 303.1 3.51 4.23 43.82 2.28
preflen subs hufcost 1499540 187.4 2.17 2.62 27.10 3.69
preflen subs rmnl bitcost 8 1851496 231.4 2.68 3.23 33.46 2.99
preflen subs rmnl hufcost 1257113 157.1 1.82 2.19 22.72 4.40
compress bitcost 8 2421320 302.7 3.50 4.22 43.75 2.29
preflen subs rmnl compress bitcost 8 1115064 139.4 1.61 1.95 20.15 4.96_ __

Table 1. Performance of the compression pipelines. This table summarizes the techniques applied to a dictionary of
71661 words in 691752 characters (lower-case letters and newlines). Each method is described by its UNIX pipeline, and
the first number in each row counts the bits used by the scheme. All other performance measures are derived from the bit
count, and give different ways of thinking about the effectiveness of the compression. The last line, for instance,
describes a highly compressed file of 139.4 kilobytes. Each character in the dictionary is represented by 1.61 bits (com-
pared to 8 in the original file), and each word in the dictionary is represented in 1.95 bytes (compared to 9.65 originally).
The resulting file is 20.15% the size of the original, for a reduction factor of 4.96. The same experiment on a larger dictio-
nary (Webster’s Second, which contains 233614 words and 2477182 characters) gave similar results.
__
is represented by the 9-bit string ‘‘110101000’’. The tree
in Figure 1 uses 4.28 bits per letter to encode the original
dictionary. Although we applied Huffman codes to bytes,
we could just as easily encode letter pairs, syllables, or
words in English text. But due to editorial space con-
straints, I’ll have to use the common magazine compres-
sion technique of promising to describe Huffman codes
in a column all to themselves.

e
•
nl

•

d
•
m

•
l

•

p
•
u

•
s

•

n
•
o

•

t
•

r

•

a
•

b
•

j
•
q

•

x
•
z

•
v

•
c

•

i
•

g
•
y

•

h
•

f
•

k
•
w

Figure 1. A Huffman code for the dictionary.

I wrote a simple program to measure the cost of Huff-
man encoding a file; the hufcost program is imple-
mented in a few dozen lines of C, Awk and Shell. The
Huffman codes themselves required the 2,959,010 bits
reported in Table 1. But the hufcost program ignores
the space required to transmit the Huffman tree itself.
When I measured the output of the UNIX pack program
(originally written by Tom Szymanski at Princeton in
1976; it implements Huffman codes), I found that it used
an extra 181 bytes, or one twentieth of a percent more

Software Explorations — Galley 6

than my simple program estimated. And Huffman codes
combine nicely with prefix-length codes; the pipeline
preflen | hufcost gives a file about 29% the size of
the original.

Common Substrings

When you browse through the prefix-length encoding
you notice a lot of words like ‘‘5ment’’ and ‘‘6ing’’. An
ancient compression technique represents common
suffixes by a succinct code. Modern tools, though, make
it easy to search for and to encode common patterns that
occur anywhere in a word. I therefore wrote an Awk pro-
gram to hunt for common substrings in the prefix-length
encoded file. Here are the first few lines of its output:

7941 ness 2647
6224 ess 3112
5456 nes 2728
4738 ly 4738
4734 ing 2367
4356 ion 2178
4000 ne 4000
3930 in 3930
3921 es 3921
3492 er 3492

...

The first line states that the substring ‘‘ness’’ occurs
2647 times, and that if we encode it by a single character
(for instance, a capital letter), we save 2647×(4 − 1) =
7941 characters. That output was made by this Awk pro-
gram; I’ll leave the interpretation as an exercise for
Awkophiles.

{ n = length($1)
for (i = 1; i <= n; i++)

for (j = n+1-i; j > 1; j--)
cnt[substr($1, i, j)]++

}
END { for (i in cnt) {

save = cnt[i] * (length(i)-1)
if (save > 1000)

print save "\t" i "\t" cnt[i]
}

}

The output suggests a number of potentially effective
codes, but there is substantial overlap in the list: once we
represent ‘‘ness’’ by a single character, there will be far
fewer occurrences of ‘‘nes’’ and ‘‘ess’’. I therefore went
through the list by hand, and removed substrings with
overlap. Here is my final list of 26 substrings:

ness ly ing ion er ic te al le
io ous an is at ity ed ia or
ment st ra ou tic abl all ine

I then ran the pruned file through a short Awk program to

Software Explorations — Galley 7

write the following subs program:

{ gsub(/ness/, "A")
gsub(/ly/, "B")
gsub(/ing/, "C")
...

print
}

Table 1 shows the effectiveness of this encoding in sev-
eral different pipelines.

Exercise 8. Write the program that writes subs.
Some readers will prefer to translate into sed code
rather than Awk. Experiment with numbers of sub-
strings other than 26.

Out, Damned New Line!

After we use the prefix encoding, each line in the file
consists of numbers followed by letters followed by a
newline. The newline character is redundant, so we can
remove it with the rmnl program, which is implemented
as

tr -d ’\012’

The most intuitive way for me to measure this change is
to see that it drops the length of the output of preflen |
subs from 4.23 to 3.23 characters per word.

Exercise 9. Write the program to re-insert newlines.

Lempel-Ziv Compression

The UNIX compress command implements the com-
pression method first described by Abraham Lempel and
Jacob Ziv. While Huffman codes represent fixed-length
strings with variable-length codes, Lempel-Ziv methods
represent variable-length strings with fixed-length codes.
As an example of another powerful data compression
technique, I am not going to describe Lempel-Ziv coding,
but merely provide a pointer to Bob Lucky’s description
under Further Reading. Table 1 shows the effectiveness
of compress in several different pipelines: by itself, it
gives a factor of 2.29, but combined with the pipeline
preflen | subs | rmnl, it squeezes the dictionary by a
factor of almost 5.

Exercise 10. Find out what compression programs
are available on your system, and measure their effec-
tiveness on some of your files.

The Bottom Line

Our little experiment in data compression is not atypi-
cal of the field. Several methods gave us a compression
factor of two. When we mixed-and-matched those, we
got up to three. With a whole lot of work and a little engi-
neering common sense, we ended up with a factor near
five. But we’ve just barely scratched the surface of this
problem: the sidebar on page PPP describes two other

Software Explorations — Galley 8

programs for the task, and here are a few exercises you
can try yourself.

Exercise 11. Try squeezing a dictionary on your sys-
tem; measure the effect of various methods. For our
experiment we ignored upper-case letters; how would
you deal with them? What about languages other than
English?

Principles

Data Compression. All of the data compression tech-
niques we used are applicable to many problems beyond
dictionaries: differential coding, Huffman codes, abbrevi-
ating common patterns, removing redundant characters,
and Lempel-Ziv coding. We built some special-purpose
programs for this job, but whenever possible we used
general UNIX tools, such as rev, pack and compress.

Prototyping on UNIX. Bob Martin of Bellcore observes
that ‘‘You’re always going to build a prototype — the only
question is whether you’re going to deliver it to the cus-
tomer.’’ In this exercise, our prototypes only measured
the effectiveness of compression schemes; we didn’t
always implement the encoding and decoding programs.
Whenever possible we used existing UNIX tools, and we
connected them in pipelines.

The Structure of Computing. You’ll probably never
have to compress a dictionary, but the lessons of this
exercise apply to many programming tasks. Good pro-
grammers solve problems the way we compressed the
dictionary: they hunt for patterns.

Further Reading

Bob Lucky’s Silicon Dreams: Information, Man and
Machine was published by St. Martin’s Press (NY, NY) in
1989. It is a delightful introduction to many topics in
information theory and computing, including the genera-
tion, transmission and processing of text, speech and
pictures. Chapter 3 provides an excellent introduction to
Huffman codes and the Lempel-Ziv algorithm. And as an
extra bonus, each chapter ends with one of Lucky’s
thought-provoking Reflections columns that originally
appeared in IEEE Spectrum.

Any discussion of programming must acknowledge
Don Knuth’s monumental Art of Computer Programming,
published by Addison-Wesley. The seven volumes
(three of which have appeared so far) directly discuss
much of computer science, and sneak in most of the
rest. Huffman codes, for instance, are described in Sec-
tion 2.3.4.5 of Volume 1: Fundamental Algorithms (1968)
as an application of tree path lengths. In Section 6.1 of
Volume 3: Sorting and Searching (1973), Knuth studies
the fascinating problem of representing a file of all prime
numbers less than one million. He uses a number of
techniques for this problem, including differential coding
(storing the differences between successive primes) and

Software Explorations — Galley 9

variable-length codes.

Exercise 12. Sketch how you might compress a file of
the primes less than one billion.

In Section 6.3 of volume 3, Knuth considers a variant
of our problem: a compressed dictionary that allows
rapid lookup. He sketches several fascinating
approaches to prefix and suffix analysis, and an elegant
interpretive language for representing dictionaries.

Every time I return to Knuth’s books, I leave with fresh
new insights into computing.

Solutions to Selected Exercises

3. The first argument to this Awk implementation of
bitcost is the number of bits per character; an optional
second argument may specify a file name:

BEGIN { bits = ARGV[1]
ARGV[1] = ""
if (ARGC == 2) ARGC--

}
{ c += length($0) + 1 }

END { print c * bits }

The messy BEGIN action reads the number of bits per
character and ensures that later files (or the standard
input) will be processed properly. The second pattern
counts the characters in the file, and the END pattern
prints the number of characters times the number of bits
per character.

4. This C program implements the prefix-length com-
pression algorithm preflen:

#include <stdio.h>
main()
{ char word[100], last[100];

int i;
strcpy(last, "");
while (scanf("%s", word) != EOF) {

for (i=0; word[i]==last[i]; i++)
;

printf("%d%s\n", i, &word[i]);
strcpy(last, word);

}
}

This C program takes just 14 seconds on the dictionary,
for a speedup factor of 17 over the Awk version. (This is
an unusually bad ratio because the Awk program creates
and destroys a string for every call to substr.)

5. This table gives the histogram of the prefix lengths in
the prefix-length encoded file:

Software Explorations — Galley 10

0 26 11 1753
1 318 12 873
2 2622 13 491
3 9493 14 226
4 14011 15 106
5 12315 16 38
6 9601 17 14
7 7248 18 4
8 5505 19 5
9 4096 20 0
10 2914 21 2

The 26 0-length prefixes are for the letters of the alpha-
bet, while the two 21-length prefixes were for adding the
‘‘-ic’’ and ‘‘-y’’ suffixes to ‘‘electroencephalograph’’.

6. Here is a C implementation (less declarations) of the
rev program:

while (scanf("%s", thisword) != EOF) {
for (i=strlen(thisword)-1; i>=0; i--)

putchar(thisword[i]);
putchar(’\n’);

}

8. This Awk program wrote subs:

BEGIN { x = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
printf "{"

}
{ print "\tgsub(/" $2 "\/,\t\"" \

substr(x, NR, 1) "\")"
}

NR==26 { print "\tprint\n}"; exit }

11. If we allow capital letters in the dictionary, then our
5-bit code expands to 6 bits for a 20% increase. Huff-
man codes exploit the rarity of capital letters (4045 capi-
tals in 72275 words on this dictionary) for an increase of
about one percent. If we instead insert ‘‘!’’ before each
capital letter, that is about half a percent increase. In
their program described in the sidebar on page PPP,
Morris and Thompson exploited the fact that all capital
letters are at the beginning of words to encode case by
two different newline characters.

12. Knuth observes that we can encode the primes less
than N in N bits by sending a bit for each integer telling
whether it is prime; he then squeezes a factor of two
from this method by sending only the bits for odd inte-
gers. We can get down to about N /3 bits by ignoring the
integers congruent to 0, 2, 3 and 4 mod 6. If we consider
the integers mod 2×3×5, then we get down to about
8/30 of the original N bits. But before we pursue this
method too far, we should consider an insight I first
learned from Ed McCreight of Adobe Systems Incorpo-
rated: the most succinct representation of a set of prime
numbers is a program to compute them.

Software Explorations — Galley 11

Sidebar — Some Other Big Squeezes

The problem of squeezing a dictionary has been
around for a long time. In 1974, Robert Morris and Ken
Thompson wrote an internal Bell Labs memo on
‘‘Webster’s Second on the Head of a Pin’’. They first
compressed common prefixes, and then encoded sev-
eral common suffixes. Finally, they used a variable-
length code based on four-bit hexadecimal digits. Their
final compression ratio was 4.52.

After he read a draft of this column, Peter Weinberger
of Bell Labs was able to squeeze the dictionary used in
our exercise down to 1.46 bits per byte. He writes: ‘‘For
each of the 71661 words, find its length, and the length
of the prefix it has in common with the previous word (but
never use more than 9 common characters). Form file A
of 71661 bytes by multiplying, for each line, the first of
the two numbers by 10, and adding the second number.
This fits in a byte, and compress drops this file to 31571
bytes. (There’s a cheat. There is exactly one word
longer than 23 bytes, which has length 45. We’ll repre-
sent its length by 24, at the cost of a slightly longer pro-
gram.)

‘‘File B consists of the dictionary with the newlines and
common prefixes (of size no more than 9) removed. It is
208094 bytes, and compress shrinks it to 94531. The
total is 94531+31571=126102 bytes, or about 1.459
bits/character, for a compression factor of 5.49.’’

An Extra Bonus for Readers of the Draft!

This table will not be included in the final version, but
is here for your amusement and edification.
__

_ __ ___
COMPRESSION PIPELINE Bits Kbytes Bits/ Bytes/ % of Compression

Letter Word Original Factor_ ___
cat bitcost 8 19817456 2477.2 8.00 10.60 100.00 1.00
cat bitcost 5 12385910 1548.2 5.00 6.63 62.50 1.60
preflen bitcost 8 10019552 1252.4 4.04 5.36 50.56 1.98
preflen bitcost 6 7514664 939.3 3.03 4.02 37.92 2.64
rev sort preflen bitcost 8 9850832 1231.4 3.98 5.27 49.71 2.01
cat hufcost 10610861 1326.4 4.28 5.68 53.54 1.87
preflen hufcost 5700113 712.5 2.30 3.05 28.76 3.48
preflen subs bitcost 8 8565304 1070.7 3.46 4.58 43.22 2.31
preflen subs hufcost 5381767 672.7 2.17 2.88 27.16 3.68
preflen subs rmnl bitcost 8 6696392 837.0 2.70 3.58 33.79 2.96
preflen subs rmnl hufcost 4570220 571.3 1.84 2.45 23.06 4.34
compress bitcost 8 8141368 1017.7 3.29 4.36 41.08 2.43
preflen subs rmnl compress bitcost 8 4087624 511.0 1.65 2.19 20.63 4.85_ ___

Table 2. Performance on Webster’s Second. This table uses the same format as Table 1. It shows the performance on a
dictionary of 233614 words and 2477182 characters.
__
__

Jon Bentley is a Member of Technical Staff in the
Computing Science Research Center at AT&T Bell Labo-
ratories.

