Analysis of Algorithms

» estimating running time

» mathematical analysis

» order-of-growth hypotheses
» input models

» measuring space

Updated from:
Algorithms in Java, Chapter 2
Intro to Programming in Java, Section 4.1

Algorithms in Java, 4™ Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - February 6, 2008 2:32:06 AM

Reasons to analyze algorithms

\ this course (COS 226)

Compare algorithms. ——

/
—~—

Understand theoretical basis. = «——— theory of algorithms (COS 423)

Predict performance.

Provide guarantees.

Primary practical reason: avoid performance bugs.

Running time

“ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise - By what course of calculation can these results be arrived at by
the machine in the shortest time? ” — Charles Babbage

how many times do
you have to turn the

/ crank?

-

Charles Babbage (1864) Analytic Engine

Some algorithmic successes

Discrete Fourier transform.

* Break down waveform of N samples into periodic components.
* Applications: DVD, JPEG, MRI, astrophysics,

* Brute force: N? steps.

w

* FFT algorithm: N log N steps, enables new technology. 1805

time

| quadratic
64T

32T

16T . .
linearithmic

8T

linear

T
size — 1K 2K 4K 8K

Freidrich Gauss

Some algorithmic successes

N-body Simulation.
 Simulate gravitational interactions among N bodies.

* Brute force: N2 steps. L3

* Barnes-Hut: N log N steps, enables new research. e
Andrew Appel
PU ‘81

time

quadratic
641 juace » estimating running time

32T

16T . .
linearithmic

8T
linear

T T T T
size — 1K 2K 4K 8K

5 6
Scientific analysis of algorithms Experimental algorithmics
A framework for predicting performance and comparing algorithms. Every time you run a program you are doing an experiment!

Scientific method. Why is
¢ Observe some feature of the universe. my program so slow ?

* Hypothesize a model that is consistent with observation.

e Predict events using the hypothesis.

* Verify the predictions by making further observations.

* Validate by repeating until the hypothesis and observations agree.

Principles.
» Experiments must be reproducible.
* Hypotheses must be falsifiable. First step. Debug your program!
Second step. Choose input model for experiments.
Third step. Run and time the program for problems of increasing size.
Universe = computer itself.

Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.
Application. Deeply related to problems in computational geometry.

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt

4

30 -30 0
30 -20 -10
-30 -10 40
-10 0 10

Measuring the running time

Q. How to time a program?
A. Manual.

% java ThreeSum < 1Kints.txt

tick tick tick

0

tick tick

2

391930676 -763182495 371251819
-326747290 802431422 -475684132

% java ThreeSum < 2Kints.txt

3-sum: brute-force algorithm

public class ThreeSum
{
public static int count(long[] a)
{
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; Jj++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)
cnt++;
return cnt;

public static void main(String[] args)
{
int[] a = StdArrayIO.readLonglD() ;
StdOut.println(count(a)) ;

Measuring the running time

Q. How to time a program?
A. Automatic.

Stopwatch stopwatch = new Stopwatch();
ThreeSum.count(a) ;

double time = stopwatch.elapsedTime() ;

StdOut.println("Running time: " + time + " seconds");

check each triple

client code

public class Stopwatch
{

private final long start = System.currentTimeMillis();

public double elapsedTime ()
{

long now = System.currentTimeMillis();

return (now - start) / 1000.0;

implementation

3-sum: initial observations

Data analysis. Observe and plot running time as a function of input size N.

time
|
time (seconds) 1 512T
1024 0.26
2048 2.16 256T
4096 17.18 1287
8192 137.76 64T |
I T T T
size — 1K 2K 4K 8K

T Running Linux on Sun-Fire-X4100

Prediction and verification

Hypothesis. 2.5 x 1019 x N3 seconds for input of size N.

Prediction. 17.18 seconds for N =4,096.

Observations. time (seconds)

4096 17.18
4096 17.15 agrees
4096 17.17

Prediction. 1100 seconds for N = 16,384,

Observation.

time (seconds)

agrees
16384 1118.86

Empirical analysis

Log-log plot. Plot running time vs. input size N on log-log scale.

time
|
1024T

512T

64T -|
- slope = 3
8T
4T -
2T

T

i h T T T T
size — 1K 2K 4K 8K

power law

«
Regression. Fit straight line through data points: ¢ Na.

slope

/
Hypothesis. Running time grows cubically with input size: ¢ N°.

Doubling hypothesis

Q. What is effect on the running time of doubling the size of the input?

512 0.03 -
1024 0.26 7.88
2048 2.16 8.43
4096 17.18 7.96
8192 137.76 7.96
“\

| I

numbers increases running fime increases

by a factor of 2 by a factor of 8
Ig of ratio is

exponent in power law
(Ig 7.96 = 3)

Bottom line. Quick way to formulate a power law hypothesis.

Experimental algorithmics

Many obvious factors affect running time:

* Machine.
 Compiler.
* Algorithm.
¢ Input data.

More factors (not so obvious):

* Caching.

* Garbage collection.

* Just-in-time compilation.

* CPU use by other applications.

Bad news. It is often difficult fo get precise measurements.
Good news. Easier than other sciences.

Mathematical models for running time

e.g., can run huge number of experiments

Total running time: sum of cost x frequency for all operations.

* Need to analyze program to determine set of operations.

* Cost depends on machine, compiler.

* Frequency depends on algorithm, input data.

The Art of
Computer
Programming

tal Algorithms

DONALD E. KNUTH

The Art of
Computer
Programming

DONALD E. KNUTH

The Art of
Computer
Programming

DONALD E. KNUTH Donald Knuth
1974 Turing Award

In principle, accurate mathematical models are available.

» mathematical analysis

Cost of basic operations

integer add
integer multiply
integer divide
floating point add
floating point multiply
floating point divide
sine

arctangent

a+b
a*b

a/b

a/b
Math.sin(theta)

Math.atan2(y, x)

2.1

2.4

5.4

4.6

4.2

13.5

91.3

129.0

1 Running OS X on Macbook Pro 2.26Hz with 26B RAM

20

Cost of basic operations

variable declaration int a
assignment statement a=>b
integer compare a<b
array element access afi]
array length a.length

1D array allocation new int[N]

2D array allocation new int[N] [N]
string length s.length()
substring extraction s.substring(N/2, N)

string concatenation s+t

(&}

c2

c3

cs

cs

co N

¢ N?

cg

c9

cio N

Novice mistake. Abusive string concatenation.

Example: 2-sum
Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; j++)
if (a[i] + a[j] == 0) count++;

variable declaration N+2
assignment statement N+2
less than comparison 12(N+1)(N+ ?/
equal to comparison 12NWN-1)
array access N(N-1)

increment <N?

0+1+4+2+...+(N—-1) =

tedious to count exactly

23

Example: 1-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
if (a[i] == 0) count++;

variable declaration 2
assignment statement 2
less than comparison N+1

equal to comparison

array access

N /
increment <2N

Tilde notation

between N (no zeros)
and 2N (all zeros)

* Estimate running time (or memory) as a function of input size N.

* Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1. 6N3 + 20N + 16 ~ 6N3

Ex2. 6N3 + 100N43 + 56 ~ 6N3

Ex3. 6N3+ 17N2IgN+ 7N ~ 6N3
%/—J

discard lower-order terms
(e.g., N = 1000 6 trillion vs. 169 million)

Technical definition. fIiN) ~ g(N) means lim LAGY) =1

N> g(N)

22

24

Example: 2-sum

Q. How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; j++)

if (a[i] + a[j] == 0) count++; |‘— “inner loop"

~N (4]

variable declaration ~aN
assignment statement ~N &) ~ N
less than comparison ~1/2N?2
c3 ~ N2
equal to comparison ~1/2N?2
array access ~ N2 c4 ~ ¢4 N?
increment < N? s < csN?

total ~cN?

25

Mathematical models for running time
In principle, accurate mathematical models are available.

In practice,

» Formulas can be complicated.

* Advanced mathematics might be required.
* Exact models best left for experts.

costs (depend on machine, compiler)

— N

Tn=cC1tA + 2B+ ¢c3C+caD + cs5E

A = variable declarations U
B = assignment statements — frequencies
C = compare '_; (depend on algorithm, input)
D = array access 1~
rd

E = increment

Bottom line. We use approximate models in this course: Tn~c N3,

27

Example: 3-sum

Q. How many instructions as a function of N?

public static int count(int[] a)

int N = a.length;
int cnt = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

inner
loop

for (int k = j+1; k < N; k++) ~

\ if (ali]l + a[j] + a[k] == 0)]
cnt++; ~

return cnt; depends on input data

N) _ NN-DH(N-2)
£l

Remark. Focus on instructions in inner loop; ighore everything else!

» order-of-growth hypotheses

26

28

Common order-of-growth hypotheses

To determine order-of-growth:

* Assume a power law T ~c N <.

* Estimate exponent a with doubling hypothesis.

* Validate with mathematical analysis.

Ex. ThreeSumDeluxe. java

Food for thought. How is it implemented?

time (seconds) T

1,000 0.43
2,000 0.53
4,000 1.01
8,000 2.87
16,000 11.00
32,000 44.64
64,000 177.48

observations

Caveat. Can't identify logarithmic factors with doubling hypothesis.

Common order-of-growth hypotheses

rowth

g ical code framework description example

rate P P p
1 a=Db+ c;

constant

log N logarithmic
N linear
Nlog N linearithmic
N? quadratic
N3 cubic
2N exponential

while (N > 1)
{ N=N/2; ... }

for (int i = 0; i < N; i++)

[see lecture 5]

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{ ... }

for (int i =
for (int j =
for (int k

{

i < N; i+4)

0; j < N; j++)

= 0; k < N; k++)
}

[see lecture 24]

statement add two numbers

divide in half binary search
loop find the maximum
divide

mergesort
and conquer

double loop check all pairs
triple loop check all triples
exhaustive check all

search possibilities

29

Common order-of-growth hypotheses

Good news. the small set of functions
1, logN, N, NlogN, N2, N3, and 2N

suffices o describe order-of-growth of typical algorithms.

ml/lu growth rate “ T(2N) / T(N)
102474 1 constant 1
5127 S
i log N logarithmic ~1
] N linear 2
64T -
i Nlog N linearithmic ~2
] N2 quadratic 4
8T
3 .
47 N cubic 8
T logarithmic 2N exponential T(N)
T constant
Gk 2k 4k s o2 T
Orders of growth (log-log plot) factor for
doubling hypothesis

Practical implications of order-of-growth

Q. How long to process millions of inputs?
Ex. Population of NYC was "millions" in 1970s; still is.

Q. How many inputs can be processed in minutes?

Ex. Customers lost patience waiting "minutes" in 1970s;
they still do.

For back-of-envelope calculations, assume:

decade processor instructions
speed per second

1970s 1 MHz

1980s 10 MHz 107
1990s 100 MHz 108
2000s 16Hz 10°

1
10
102
103
10*
10°
100
107
108
10°

10

107

1 second
10 seconds
1.7 minutes
17 minutes

2.8 hours

1.1 days

1.6 weeks
3.8 months

3.1years
3.1 decades

3.1 centuries
forever

age of universe

30

32

Practical implications of order-of-growth Practical implications of order-of-growth

effect on a program that

problem size solvable in minutes time to process millions of inputs runs for a few seconds
growth description
rate time for 100x size for 100x
more data faster computer
1 1 constant independent of input size - -
log N logarithmic nearly independent of input size - -
log N
- tens of hundreds of - ' A N linear optimal for N inputs a few minutes 100x
N millions o s billions minutes seconds second instant
millions millions
Nlog N linearithmic nearly optimal for N inputs a few minutes 100x
hundreds of - . hundreds of . tens of
Nlog N millions millions s hour minutes seconds
thousands millions seconds
N2 quadratic not practical for large problems several hours 10x
N? hundreds thousand thousands ;ens OZ decades years months weeks
fhousands N3 cubic not practical for medium problems several weeks 4-5x
3 —
N hundred hundreds thousand thousands millennia 2N exponential useful only for tiny problems forever 1x
33 34
Types of analyses
Best case. Running time determined by easiest inputs.
Ex. N-1 compares to insertion sort N elements in ascending order.
Worst case. Running time guarantee for all inputs.
Ex. No more than $N? compares to insertion sort any N elements.
Average case. Expected running time for "random" input.
Ex. ~ % N2 compares on average to insertion sort N random elements.
10000000
* Descendng
o * Random .
» input models g 0% Y —— g
o g 0
z .
B 10 : *
£ g .
o .
o1 RIS
0,001 L
1000 10000 100000 1000000
Input Size

35 36

Commonly-used notations

10 N2)
Tilde leading term ~10N2 10 N2+22 Nlog N provide
10 N2+ 2 N +37 approximate model
) N2 assi
Big Theta asymptotic e 9000 N2 classify
growth rate SN24+22 Nlog N+ 3N algorithms
N2 devel
Big Oh O(N?) and smaller O(N?) 100 N evelop
22 NlogN+3N upper bounds
9000 N2 develo
BigOmega O(N?)and larger QN2 N5 oo P |
N3+22NlogN+3 N ower bounds

Predictions and guarantees

Theory of algorithms. Worst-case running time of an algorithm is O(f(N)).

f(N)

Advantages
¢ describes guaranteed performance. time/memory
» O-notation absorbs input model.
Challenges values represented
. by O(f(N)) /
 Cannot use to predict performance.
* Cannot use to compare algorithms.
input size

39

Commonly-used notations
Ex 1. Our brute-force 3-sum algorithm takes ©(N 3) time.
Ex 2. Conjecture: worst-case running time for any 3-sum algorithm is Q(N2).

Ex 3. Insertion sort uses O(NV?2) compares to sort any array of N elements;
it uses ~ N compares in best case (already sorted) and ~ $N2 compares in the
worst case (reverse sorted).

Ex 4. The worst-case height of a tree created with union find with path
compression is O(N).

Ex 5. The height of a tree created with weighted quick union is O(log N).

/

base of logarithm absorbed by big-Oh

1

log, N = log, N
log, a
38
Predictions and guarantees
Experimental algorithmics. Given input model average-case
running time is ~ ¢ f(N).
AdVGnTOQGS. time/memory
* Can use to predict performance.
* Can use to compare algorithms. .
[
values represented /

Challenges. by ~ ¢ f(N)
* Need to develop accurate input model.

* May not provide guarantees.

input size

40

» measuring space

Typical memory requirements for arrays in Java

Array overhead. 16 bytes on a typical machine.

type type
char[] 2N+ 16 char[][] 2N2+ 20N + 16
int[] 4N + 16 int[][] 4N? + 20N + 16
double[] 8N +16 double[][] 8N?Z + 20N + 16
one-dimensional arrays two-dimensional arrays

Q. What's the biggest double[] array you can store on your computer?

/

typical computer in 2008 has about 16B memory

41

43

Typical memory requirements for primitive types in Java

Bit. Oor 1.

Byte. 8 bits.

Megabyte (MB). 21° bytes ~ 1 million bytes.
Gigabyte (GB). 2% bytes ~ 1 billion bytes.

boolean 1
byte 1
char 2

int 4
float 4
long 8
double 8

42

Typical memory requirements for objects in Java

Object overhead. 8 bytes on a typical machine.
Reference. 4 bytes on a typical machine.

Ex 1. Each complex object consumes 24 bytes of memory.

public class Complex 8 bytes overhead for object
{

private double re;] 8 bytes

private double im; «—fF—— 8bytes
} 24 bytes

24 bytes

object
overhead

re ~_double
«— values

im

44

Typical memory requirements for objects in Java

Object overhead. 8 bytes on a typical machine.
Reference. 4 bytes on a typical machine.

Ex 2. A string of length N consumes 2N + 40 bytes.

public class String
{

8 bytes overhead for object

private int offset; 7 4 bytes
private int count; <~ 4 bytes
private int hash; <« 4 bytes
private char[] value; <«

4 bytes for reference
(plus 2N + 16 bytes for array)

2N + 40 bytes

object
overhead

value | reference
offset [~
count
hash

int
values
“ :

45

Example 2

Q. How much memory does this code fragment use as a function of N?

int N = Integer.parselnt(args|[0]) ;
for (int i = 0; i < N; i++) {
int[] a = new int[N];

Remark. Java automatically reclaims memory when it is no longer in use.

47

Example 1

Q. How much memory does this program use as a function of N ?

public class RandomWalk {
public static void main(String[] args) ({
int N = Integer.parselnt(args[0])
int[][] count = new int[N] [N];
int x = N/2;
int y = N/2;

for (int i = 0; i < N; i++) {
// no new variable declared in loop

count[x] [y]++;

Out of memory

Q. What if I run out of memory?

% java RandomWalk 10000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

% java -Xmx 500m RandomWalk 10000

% java RandomWalk 30000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

% java -Xmx 4500m RandomWalk 30000

Invalid maximum heap size: -Xmx4500m

The specified size exceeds the maximum representable size.
Could not create the Java virtual machine.

46

48

Turning the crank: summary

In principle, accurate mathematical models are available.
In practice, approximate mathematical models are easily achieved.

Timing may be flawed?
* Limits on experiments insignificant compared to
other sciences.

* Mathematics might be difficult?
* Only a few functions seem to turn up.
* Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

* Need to understand input to effectively process it.

* Approach 1: design for the worst case.

» Approach 2: randomize, depend on probabilistic guarantee.

49

