
Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

Universality and Computability

2

Fundamental Questions

Q. What is a general-purpose computer?
Q. Are there limits on the power of digital computers?
Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.
! Princeton == center of universe.
! Hilbert, Gödel, Turing, Church, von Neumann.
! Automata, languages, computability, universality, complexity, logic.

David Hilbert Kurt Gödel Alan Turing Alonzo Church John von Neumann

Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

7.4 Turing Machines

Alan Turing

Challenge: Design simplest machine that is
"as powerful" as conventional computers.

4

Turing Machine

Desiderata. Simple model of computation that is "as powerful" as
conventional computers.

Intuition. Simulate how humans calculate.

Ex. Addition.

0 0 0 0

0 0 0 1

0 0 0 0

2 3 4 5

0 0 + 3

0 0 0 0

1 4 1 5

0 0 0 0

0 0 0

6 0 0

9 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

5

Turing Machine: Tape

Tape.
! Stores input, output, and intermediate results.
! One arbitrarily long strip, divided into cells.
! Finite alphabet of symbols.

Tape head.
! Points to one cell of tape.
! Reads a symbol from active cell.
! Writes a symbol to active cell.
! Moves left or right one cell at a time.

tape head

tape

tape head

tape # 1 1 0 0 + 1 0 1 1 # ……tape

6

Turing Machine: Fetch, Execute

States.
! Finite number of possible machine configurations.
! Determines what machine does and which way tape head moves.

State transition diagram.
! Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5
L

R

R

R NY

… # # x x x 1 1 0 # # …Before

7

1

Turing Machine: Fetch, Execute

States.
! Finite number of possible machine configurations.
! Determines what machine does and which way tape head moves.

State transition diagram.
! Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5
L

R

R

R NY

… # # x x x 1x 0 # # …xAfter

L

R

8

Turing Machine: Initialization and Termination

Initialization.
! Set input on some portion of tape.
! Set tape head.
! Set initial state.

Termination.
! Stop if enter yes, no, or halt state.
! Infinite loop possible.

– (definitely stay tuned !)

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5
L

R

R

R NY

… # # x x x x x x # # …

9

Example: Equal Number of 0's and 1's

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x

find left end

skip x

find 1

find 0

accept reject

L

R

R

R NY

10

7.5 Universality

11

Universality

Q. Which one of the following does not belong?

Espresso makeriMac Palm PilotDell PCCray

Xbox Tivo Turing machine TOY Java language

MS Excel Python languageJava cell phone Quantum computer DNA computer

12

Java: As Powerful As Turing Machine

Turing machines are equivalent in power to TOY and Java.
! Can use Java to solve any problem that can be solved with a TM.
! Can use TM to solve any problem that can be solved with a TOY.
! Can use TOY to solve any problem that can be solved with Java.

Java simulator for Turing machines.

State state = start;
while (true) {
 char c = tape.readSymbol();
 tape.write(state.symbolToWrite(c));
 state = state.next(c);
 if (state.isLeft()) tape.moveLeft();
 else if (state.isRight()) tape.moveRight();
 else if (state.isHalt()) break;
}

13

Turing Machine: As Powerful As TOY Machine

Turing machines are equivalent in power to TOY and Java.
! Can use Java to solve any problem that can be solved with a TM.
! Can use TM to solve any problem that can be solved with a TOY.
! Can use TOY to solve any problem that can be solved with Java.

Turing machine simulator for TOY programs.
! Encode state of memory, registers, pc, onto Turing tape.
! Design TM states for each instruction.
! Can do because all instructions:

– examine current state
– make well-defined changes depending on current state

14

TOY: As Powerful As Java

Turing machines are equivalent in power to TOY and Java.
! Can use Java to solve any problem that can be solved with a TM.
! Can use TM to solve any problem that can be solved with a TOY.
! Can use TOY to solve any problem that can be solved with Java.

TOY simulator for Java programs.
! Variables, loops, arrays, functions, linked lists,
! In principle, can write a Java-to-TOY compiler!

15

Java, Turing Machines, and TOY

Turing machines are equivalent in power to TOY and Java.
! Can use Java to solve any problem that can be solved with a TM.
! Can use TM to solve any problem that can be solved with a TOY.
! Can use TOY to solve any problem that can be solved with Java.

Also works for:
! C, C++, Python, Perl, Excel, Outlook,
! Mac, PC, Cray, Palm pilot,
! TiVo, Xbox, Java cell phone,

Does not work:
! DFA or regular expressions.
! Gaggia espresso maker.

17

Universal Turing Machine

Java program: solves one specific problem.
TOY program: solves one specific problem.
TM: solves one specific problem.

Java simulator in Java: Java program to simulate any Java program.
TOY simulator in TOY: TOY program to simulate any TOY program.
UTM: Turing machine that can simulate any Turing machine.

General purpose machine.
! UTM can implement any algorithm.
! Your laptop can do any computational task: word-processing,

pictures, music, movies, games, finance, science, email, Web, …

19

Representations of a Turing Machine

Graphical:

Tabular:

Linear: * A 0 0 A R * A 1 1 A R * A # # B L * B 0 1 A R * B 1 0 B L . . .

RA1#B

LB01B

RA10B

LB##A

RA11A

RA00A

Direction
Next

State

Symbol

to write

Symbol

read

Current

 state

Continuous
Binary
Incrementer

1:0

0:1R L
#:#

#:11:1

0:0

A B

20

A*RA00A*!0B!#1!01
CBI’s DescriptionCBI’s Tape state, symbol

UTM

Universal Turing Machine

UTM Operation:
! Find state, symbol in Description
! Copy new symbol to CBI’s tape
! Move ! L or R
! Update state, symbol
! Repeat

21

Universal Turing Machine (a more abstract view)

Turing machine M. Given input x, Turing machine M outputs M(x).

TM intuition. Software program that solves one particular problem.

Mx M(x)

… # 0 1 1 # …

data x

22

Universal Turing Machine (a more abstract view)

Turing machine M. Given input x, Turing machine M outputs M(x).

Universal Turing machine U. Given input M and x, universal Turing
machine U outputs M(x).

TM intuition. Software program that solves one particular problem.
UTM intuition. Hardware platform that can implement any algorithm.

U
M

x
M(x)Mx M(x)

… # 0 1 1 # … … # 0 1 1 # 1 0 1 1 # …

data x data x program M

23

Church-Turing Thesis

Remark. "Thesis" and not a mathematical theorem because it's a
statement about the physical world and not subject to proof.

Implications.
! No need to seek more powerful machines or languages.
! Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

Church Turing thesis (1936). Turing machines can do anything that can
be described by any physically harnessable process of this universe.

but can be falsified

24

Church-Turing Thesis: Evidence

Evidence.
! 7 decades without a counterexample.
! Many, many models of computation that turned out to be equivalent.

"universal"

model of computation description

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped lambda calculus method to define and manipulate functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

extended L-systems parallel string replacement rules that model plant growth

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

random access machines registers plus main memory, e.g., TOY, Pentium

cellular automata cells which change state based on local interactions

quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA

Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

7.6 Computability

Take any definite unsolved problem, such as the question as
to the irrationality of the Euler-Mascheroni constant ", or
the existence of an infinite number of prime numbers of the
form 2n-1. However unapproachable these problems may
seem to us and however helpless we stand before them, we
have, nevertheless, the firm conviction that their solution
must follow by a finite number of purely logical processes.
 -David Hilbert, in his 1900 address to the International

 Congress of Mathematics

26

Halting Problem

Halting problem. Write a Java function that reads in a Java function f
and its input x, and decides whether f(x) results in an infinite loop.

Ex. Does f(x) terminate?

! f(6): 6 3 10 5 16 8 4 2 1

! f(27): 27 82 41 124 62 31 94 47 142 71 214 107 322 … 4 2 1

! f(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 … -17 …

public void f(int x) {
 while (x != 1) {
 if (x % 2 == 0) x = x / 2;
 else(x % 2 == 0) x = 3*x + 1;
 }
}

relates to famous open math conjecture

27

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.

Proof intuition: lying paradox.
! Divide all statements into two categories: truths and lies.
! How do we classify the statement: I am lying.

Key element of lying paradox and halting proof: self-reference.

Theorem. [Turing 1937] The halting problem is undecidable.

and (by universality) no Java program either

28

Halting Problem: Preliminaries

Some programs take other programs as input
! Java compiler, e.g.

Can a program take itself as input ??

Why not ?

! EditDistance could take EditDistance.java as input, and compute
edit distance between “DNA sequences” public and class

! GuitarHero could “play” the characters in GuitarHero.java

29

Halting Problem Proof

Assume the existence of halt(f,x):
! Input: a function f and its input x.
! Output: true if f(x) halts, and false otherwise.
! Note: halt(f,x) does not go into infinite loop.

We prove by contradiction that halt(f,x) does not exist.
! Reductio ad absurdum : if any logical argument based on an

assumption leads to an absurd statement, then assumption is false.

public boolean halt(String f, String x) {
 if (something terribly clever) return true;
 else return false;
}

encode f and x as strings

hypothetical halting function

30

Halting Problem Proof

Assume the existence of halt(f,x):
! Input: a function f and its input x.
! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:
! If halt(f,f) returns true, then strange(f) goes into an infinite loop.
! If halt(f,f) returns false, then strange(f) halts.

f is a string so legal (if perverse)
to use for second input

public void strange(String f) {
 if (halt(f, f)) {
 // an infinite loop
 while (true) { }
 }
}

31

Halting Problem Proof

Assume the existence of halt(f,x):
! Input: a function f and its input x.
! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:
! If halt(f,f) returns true, then strange(f) goes into an infinite loop.
! If halt(f,f) returns false, then strange(f) halts.

In other words:
! If f(f) halts, then strange(f) goes into an infinite loop.
! If f(f) does not halt, then strange(f) halts.

32

Halting Problem Proof

Assume the existence of halt(f,x):
! Input: a function f and its input x.
! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:
! If halt(f,f) returns true, then strange(f) goes into an infinite loop.
! If halt(f,f) returns false, then strange(f) halts.

In other words:
! If f(f) halts, then strange(f) goes into an infinite loop.
! If f(f) does not halt, then strange(f) halts.

Call strange()with ITSELF as input.
! If strange(strange) halts then strange(strange) does not halt.
! If strange(strange) does not halt then strange(strange) halts.

33

Halting Problem Proof

Assume the existence of halt(f,x):
! Input: a function f and its input x.
! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:
! If halt(f,f) returns true, then strange(f) goes into an infinite loop.
! If halt(f,f) returns false, then strange(f) halts.

In other words:
! If f(f) halts, then strange(f) goes into an infinite loop.
! If f(f) does not halt, then strange(f) halts.

Call strange()with ITSELF as input.
! If strange(strange) halts then strange(strange) does not halt.
! If strange(strange) does not halt then strange(strange) halts.

Either way, a contradiction. Hence halt(f,x) cannot exist.

34

Consequences

Halting problem is not "artificial."
! Undecidable problem reduced to simplest form to simplify proof.
! Self-reference not essential.
! Closely related to practical problems.

No input halting problem. Give a function with no input, does it halt?

Program equivalence. Do two programs always produce the same output?

Uninitialized variables. Is variable x initialized?

Dead code elimination. Does control flow ever reach this point in a
program?

35

More Undecidable Problems

Hilbert’s 10th problem.
! “Devise a process according to which it can be determined by a finite number

of operations whether a given multivariate polynomial has an integral root.”

Examples.
! f(x, y, z) = 6x3 y z2 + 3xy2 - x3 – 10.
! f(x, y) = x2 + y2 – 3.
! f(x, y, z) = xn + yn – zn

Andrew Wiles, 1995

yes: f(5, 3, 0) = 0
no

no if n # 3 and x, y, z > 0.
(Fermat's Last Theorem)

yes if n = 2, x = 3, y = 4, z = 5

36

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a
given string or picture.

Mandelbrot set (40 lines of code)

37

More Undecidable Problems

Virus identification. Is this program a virus?

Private Sub AutoOpen()
On Error Resume Next
If System.PrivateProfileString("", CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",
 "Level") <> "" Then

CommandBars("Macro").Controls("Security...").Enabled = False
. . .
For oo = 1 To AddyBook.AddressEntries.Count
 Peep = AddyBook.AddressEntries(x)
 BreakUmOffASlice.Recipients.Add Peep
 x = x + 1
 If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
. . .
BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)"
. . .

Melissa virus

March 28, 1999

Can write programs in MS Word.
This statement disables security.

38

Context: Mathematics and Logic

Mathematics. Formal system powerful enough to express arithmetic.

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Can't prove contradictions like 2 + 2 = 5.
Decidable. Algorithm exists to determine truth of every statement.

Q. [Hilbert] Is mathematics complete and consistent?
A. [Gödel's Incompleteness Theorem, 1931] No!!!

Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
A. [Church 1936, Turing 1936] No!

Principia Mathematics
Peano arithmetic
Zermelo-Fraenkel set theory

39

Turing's Key Ideas

Turing machine.
formal model of computation

Program and data.
encode program and data as sequence of symbols

Universality.
concept of general-purpose, programmable computers

Church-Turing thesis.
computable at all == computable with a Turing machine

Computability.
inherent limits to computation

42

Alan Turing and
his elder brother.

Alan's report card at 14.

Alan Turing

Alan Turing (1912-1954).
! Father of computer science.
! Computer Science’s “Nobel Prize” is called the Turing Award.

