
Telling a computer
how to behave
(via pseudocode -- a workaround
for Computing’s Tower of Babel.)

COS 116: 2/12/2008
Sanjeev Arora



Jan 29, 2008





Steps in solving a computational task

 Design an algorithm: A precise,unambiguous
description for how to compute a solution.

 Express algorithm in pseudocode.

 Turn pseudocode into computer program.



Example: Adding two numbers

Discussion 
Time

Imagine you are describing this task to somebody who has never done 
it.  How would you describe it?



 Our robot is getting ready for a big date…

 How would it identify the cheapest bottle?
(Say it can scan prices)

Discussion 
Time



Solution

 Pick up first bottle, check price

 Walk down aisle. For each bottle, do this:
 If price on bottle is less than price in hand,

exchange for one in hand.



How can we describe an algorithm precisely
enough so there is no ambiguity? 



Recall: Scribbler’s “Language”

 Several types of simple instructions
 E.g. “Move forward for 1 s”

 Two types of compound instructions

If <condition> Then
{

List of instructions
}
Else
{

List of instructions
}

Do 5 times
{

List of instructions
}

Conditional (a.k.a. Branching)
Loop (2 types)

Do while (condition)
{
List of instructions
}



Scribbler language illustrates essential
features of all computer languages

 Fundamental features of human languages:nouns/verbs/adjectives,
subjects/objects, pronouns, etc.

 Computer languages also share fundamental features, e.g. conditional
and loop statements, variables, ability to perform arithmetic, etc.

Java

C++BASIC

Python

Computing’s Tower of Babel



Similar question in different setting

 Robot has n prices stored in memory

 Wants to find minimum price



Computer Memory: simplified view

 A scratchpad that can be perfectly erased
and re-written any number of times

 A variable: a piece of memory with a
name; stores a “value”

22.99i =

valuename



Examples

i  ← 5 Sets i to value 5

j  ← i Sets j to whatever value is in i.
Leaves i unchanged

i  ← j + 1 Sets i to j + 1.
Leaves j unchanged

i  ← i + 1 Sets i to 1 more than it was.



Arrays

 A is an array of n values, A[ i ] is the i’th
value

 Example: A[3] = 52.99

40.99 62.99 52.99 … 22.99A =



Recall Solution

 Pick up first bottle, check price

 Walk down aisle. For each bottle, do this:
 If price on bottle is less than price in hand,

exchange for one in hand.



Procedure findmin
(in pseudocode)
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if ( A[ i ] < A[best] ) then
        { best ← i }

}
Output A[best].



Another way to do the same

best ← 1;
i ← 1
Do while (i < n)
{

i ← i + 1;
if ( A[ i ] < A[best] ) then

{ best ← i }
}





New problem for robot: sorting

Arrange them so prices increase from left to right.



Solution

Do for i=1 to n-1
{
   Find cheapest bottle among those numbered i to n

   Swap that bottle and the i ’th bottle.
}

“selection sort”

Task for Thurs: Write pseudocode for selection sort; due at 
the start of lecture.



Swapping

 Suppose x and y are variables.
How do you swap their values?

 Need extra variable!

tmp ← x
x ← y
y ← tmp



Aside: History of Algorithm

 Named for Abu Abdullah Muhammad bin
Musa al-Khwarizmi
(780-850AD)
 His book "Al-Jabr wa-al-Muqabilah" evolved

into today's high school algebra text.
  Notion of algorithm has existed for at

least 2000 years (in Hindu, Chinese, and
Greek traditions)

 “Variables” in algebra come from the
same tradition.



Fact: This simple pseudocode is all we need to express
allall possible computations (topic of a future lecture).

“Findmin? Sorting?? Pseudocode???
How about something more important?”

Coming up
on Thurs:

Extreme 
Weather


