

Computer Vision and
Computer Graphics:
Two sides of a coin

COS 116: Apr 22, 2008
Sanjeev Arora

Brief history of image-making

Camera obscura.

Known to chinese; 5th century BC

19th century: Replace hole with
lens; sketchpaper with
light-sensitive paper. “Camera”

Late 20th century: Replace light-sensitive paper with
electronic light sensor: “Digital camera.”

Theme 1: What is an image?

What is an image?
 Rectangular (2D) array of pixels

Continuous image
Digital image

“Pixels”

“Pixel” is a sample; need not be square

(Many choices for “rendering” the same information)

(Remember music lecture:

RGB Color Model

Plate II.3 from FvDFH

 R G B Color
0.0 0.0 0.0 Black
1.0 0.0 0.0 Red
0.0 1.0 0.0 Green
0.0 0.0 1.0 Blue
1.0 1.0 0.0 Yellow
1.0 0.0 1.0 Magenta
0.0 1.0 1.0 Cyan
1.0 1.0 1.0 White
0.5 0.0 0.0 ?
1.0 0.5 0.5 ?
1.0 0.5 0.0 ?
0.5 0.3 0.1 ?

Colors are additive

Adjusting Brightness

 Simply scale pixel components
Must clamp to range (e.g., 0 to 1)

Original Brighter

Adjusting Contrast
 Compute average luminance L for all pixels

 luminance = 0.30*r + 0.59*g + 0.11*b
 Scale deviation from L for each pixel

Must clamp to range (e.g., 0 to 1)

Original More Contrast

L

Scaling the image
 Resample with

fewer or more pixels
(mathy theory…)

Original 1/4X
resolution

4X
resolution

Theme 2: Computer vision
vs

Computer Graphics
(and why they get mathy)

Computer Vision: Understanding the “content” of an
image (usually by creating a “model” of the depicted scene)

Computer graphics: Creating an image from scratch
Using a computer model.

Math used to understand/create images

1) Coordinate geometry (turns geometry into algebra)

2) Laws of perspective Laws of perspective

(Math needed..) Physics of light

 Lighting parameters
Light source emission
Surface reflectance

N
N

eye

Surface

Light
Source

Math needed in the design of algorithms
 Example: Image Morphing

Image0

Image1

Warp0

Warp1

[Beier & Neeley]

Result

Intro to computer vision.

What is depicted in this image?

Edge detection
What is an “edge”?

Place where image
“changes” suddenly.

How to identify edges?

A very simple edge detection
idea

A[i,j] <- 5 A[i, j] - A[i+1, j] - A[i-1,j] - A[i, j+1] -A[i, j-1]

More sophisticated edge-detection uses smarter versions of
this; use Gaussian filters, etc.

Human eye does some version of edge detection.

Edge info is still too “low level.”

Image Segmentation

What are the regions
in this image? Uses many many algorithmic

ideas; still not 100% accurate

High level vision: Object recognition

What do you see in this
picture?

Much harder task than it may seem. Tiger needs to be
recognized from any angle, and under any lighting
condition and background.

Aside

At least 8 “levels” in human vision system.
Object recognition seems to require transfer of
information between levels, and
the highest levels seem tied
to rest of intelligence

Next: Computer Graphics

Applications:
 Entertainment
 Computer-aided design
 Scientific visualization
 Training
 Education
 E-commerce
 Computer art

Boeing 777 Airplane
Inside a Thunderstorm

(Bob Wilhelmson, UIUC)

 Step 1: Modeling
 How to construct and represent shapes (in 3D)

(Remo3D)

Modeling in SketchUp (demo)

Example of “model”: wireframe
 Most common: list of triangles

 Three vertices in 3D
(x1, y1, z1)
(x2, y2, z2)
(x3, y3, z3)

Usually would be augmented
with info about texture, color
etc.

Step 2: Rendering

 Given a model, a source of light, and a
point of view, how to render it on the
screen?

Rendering (contd)
 Direct illumination

 One bounce from light to eye
 Implemented in graphics cards
 OpenGL, DirectX, …

 Global illumination
 Many bounces
 Ray tracing

Direct Illumination
(Chi Zhang, CS 426, Fall99)

Ray Tracing
(Greg Larson)

Ray Casting
 A (slow) method for computing direct illumination
 For each sample:

 Construct ray from eye
through image plane

 Find first surface intersected
by ray

 Compute color of sample
based on surface properties

eye

Simple Reflectance Model

 Simple analytic model:
diffuse reflection +
specular reflection +
ambient lighting

SurfaceBased on model
proposed by Phong

Diffuse Reflection
 Assume surface reflects equally in all directions

 Examples: chalk, clay

Surface

Specular Reflection
 Reflection is strongest near mirror angle

 Examples: mirrors, metals

N

LR θθ

Ambient Lighting

This is a total cheat (avoids complexity of global illumination)!

 Represents reflection of all indirect illumination

Path Types L = light
D = diffuse bounce
S = specular bounce
E = eye

Path Types?

Henrik Wann Jensen

http://graphics.stanford.edu/~henrik/images/sc2.jpg

Ray Tracing

Henrik Wann Jensen

Ray Tracing

RenderPark

Ray Tracing

Terminator 2

Step 3: Animation

 Keyframe animation
Articulated figures

 Simulation
Particle systems

Animation
(Jon Beyer,

CS426, Spring04)

Simulation

Articulated Figures

Rose et al. `96

 Well-suited for humanoid characters
Root

LHip

LKnee

LAnkle

RHip

RKnee

RAnkle

Chest

LCollar

LShld

LElbow

LWrist

LCollar

LShld

LElbow

LWrist

Neck

Head

Keyframe Animation: Luxo Jr.

Pixar

Keyframe Animation
 Define character poses at specific times:

“keyframes”
 “In between” poses found by interpolation

Lasseter `87

Keyframe Animation

 Inbetweening: may not be plausible

Lasseter `87

Keyframe Animation

 Solution: add more keyframes

Lasseter `87

 But, animator cannot specify motion for:
o Smoke, water, cloth, hair, fire

o Soln: animation!

Cloth
(Baraff & Witkin ̀ 98)

Water

Hot Gases
(Foster & Metaxas `97)

Particle Systems
 A particle is a point mass

 Mass
 Position
 Velocity
 Acceleration
 Color
 Lifetime

 Many particles to model complex phenomena
 Keep array of particles

p = (x,y,z)

v

Particle Systems
 Recall game of life, weather etc.…
 For each frame (time step):

 Create new particles and assign attributes
 Delete any expired particles
 Update particles based on attributes and physics

 Newton’s Law: f=ma
 Render particles

