

What is the computational
cost of automating
brilliance or serendipity?
(Computational complexity and P vs NP
question)

COS 116: 4/15/2008
Sanjeev Arora

Combination lock

Why is it secure?

(Assume it cannot be picked)

Ans: Combination has 3 numbers 0-39…
thief must try 393 = 59,319 combinations

Exponential running time

 2n time to solve instances of “size” n

Main fact to remember:

For n =300,
 2n > number of atoms in the visible universe.

Increase n by 1 running time doubles!

Boolean satisfiability

 Does it have a satisfying assignment?
 What if instead we had 100 variables?
 1000 variables?
 How long will it take to determine the

assignment?

(A + B + C) · (D + F + G) · (A + G + K) · (B + P + Z) · (C + U + X)

Discussion

Is there an inherent difference between

being creative / brilliant

and

being able to appreciate creativity / brilliance?

What is a computational analogue of this phenomenon?

A Proposal

Brilliance = Ability to find
“needle in a haystack”

Comments??

Beethoven found
“satisfying assignments”
to our neural circuits
for music appreciation

There are many computational problems
where finding a solution involves “finding a
needle in a haystack”….

CLIQUE Problem

 In this social network,
is there a CLIQUE with
5 or more students?

 CLIQUE: Group of students,
every pair of whom are friends

 What is a good algorithm for
detecting cliques?

 How does efficiency depend
on network size and desired
clique size?

Rumor mill problem

 Social network for COS 116
 Each node represents a student
 Two nodes connected by edge

if those students are friends
 Johanna starts a rumor
 Will it reach Kieran?
 Suggest an algorithm
 How does running time depend

on network size?
 Internet servers solve this

problem all the time
(“traceroute” in Lab 9).

http://princeton.facebook.com/photo.php?pid=35093314&id=23447917&op=1&view=all&subj=1111165
http://princeton.facebook.com/photo.php?pid=30545835&id=1112199&op=1&view=user&subj=1112199
http://princeton.facebook.com/photo.php?pid=30775654&id=1107118&op=1&view=user&subj=1107118
http://princeton.facebook.com/photo.php?pid=30514047&id=1108245&op=1&view=user&subj=1108245
http://princeton.facebook.com/photo.php?pid=30333719&id=1106424&op=1&view=user&subj=1106424
http://princeton.facebook.com/photo.php?pid=30812926&id=1110830&op=1&view=all&subj=1111304

Exhaustive Search /
Combinatorial Explosion

Naïve algorithms for many “needle in a haystack”
tasks involve checking all possible answers
exponential running time.

 Ubiquitous in the computational universe
 Can we design smarter algorithms (as for

“Rumor Mill”)? Say, n2 running time.

Harmonious Dorm Floor

Given: Social network involving n students.

Edges correspond to pairs of students
who don’t get along.

Decide if there is a set of k students who
would make a harmonious group
(everybody gets along).

Just the Clique problem in disguise!

Traveling Salesman Problem
(aka UPS Truck problem)

 Input: n points and
all pairwise inter-point
distances, and
a distance k

 Decide: is there a path
that visits all the points
(“salesman tour”) whose
total length is at most k?

Finals scheduling

 Input: n students, k classes, enrollment lists,
m time slots in which to schedule finals

 Define “conflict”: a student is in two classes that
have finals in the same time slot

 Decide: if schedule with at most 100 conflicts
exists?

The P vs NP Question

 P: problems for which solutions can be found in
polynomial time (nc where c is a fixed integer and n is
“input size”). Example: Rumor Mill

 NP: problems where a good solution can be checked in
nc time. Examples: Boolean Satisfiability, Traveling
Salesman, Clique, Finals Scheduling

 Question: Is P = NP?
 “Can we automate brilliance?”

(Note: Choice of computational model ---
Turing-Post, pseudocode, C++ etc. --- irrelevant.)

NP-complete Problems

Problems in NP that are “the hardest”
 If they are in P then so is every NP problem.

Examples: Boolean Satisfiability, Traveling Salesman, Clique,

Finals Scheduling, 1000s of others

How could we possibly prove these problems
are “the hardest”?

“Reduction”

“If you give me a place to
stand, I will move the earth.”
– Archimedes (~ 250BC)

“If you give me a polynomial-time algorithm
for Boolean Satisfiability, I will give you a
polynomial-time algorithm for every NP
problem.” --- Cook, Levin (1971)

“Every NP problem is a satisfiability
problem in disguise.”

Dealing with NP-complete problems

1. Heuristics (algorithms that produce
reasonable solutions in practice)

2. Approximation algorithms (compute
provably near-optimal solutions)

Computational Complexity Theory:

Study of Computationally Difficult problems.

 Study matter → look at mass, charge, etc.

 Study processes → look at computational difficulty

A new lens on the world?

Example 1: Economics

General equilibrium theory:

 Input: n agents, each has some initial
endowment (goods, money, etc.) and
preference function

 General equilibrium: system of prices such that
for every good, demand = supply.

 Equilibrium exists [Arrow-Debreu, 1954].
Economists assume markets find it
(“invisible hand”)

 But, no known efficient algorithm to compute it.
How does the market compute it?

Example 2: Factoring problem

Given a number n, find two numbers p, q (neither
of which is 1) such that n = p x q.

Any suggestions how to solve it?

Fact: This problem is believed to be hard.
It is the basis of much of cryptography.
(More next time.)

Example 3: Quantum Computation

 Central tenet of quantum mechanics:
when a particle goes from A to B, it takes
all possible paths all at the same time

 [Shor’97] Can use quantum behavior to efficiently factor
integers (and break cryptosystems!)

 Can quantum computers be built, or is quantum
mechanics not a correct description of the world?

A
B

Peter Shor

Example 4: Artificial Intelligence

What is computational complexity of
language recognition?

Chess playing?

Etc. etc.

Potential way to show the brain is not a computer:
Show it routinely solves some problem that provably takes
exponential time on computers.

(Will talk more about AI in a couple weeks)

Why is P vs NP a Million-dollar
open problem?

 If P = NP then Brilliance becomes routine
(best schedule, best route, best design,
best math proof, etc…)

 If P ≠ NP then we know something
 new and fundamental
not just about computers but about the world
(akin to “Nothing travels faster than light”).

Next time: Cryptography (practical
use of computational complexity)

