

What is the computational
cost of automating
brilliance or serendipity?
(Computational complexity and P vs NP
question)

COS 116: 4/15/2008
Sanjeev Arora

Combination lock

Why is it secure?

(Assume it cannot be picked)

Ans: Combination has 3 numbers 0-39…
thief must try 393 = 59,319 combinations

Exponential running time

 2n time to solve instances of “size” n

Main fact to remember:

For n =300,
 2n > number of atoms in the visible universe.

Increase n by 1  running time doubles!

Boolean satisfiability

 Does it have a satisfying assignment?
 What if instead we had 100 variables?
 1000 variables?
 How long will it take to determine the

assignment?

(A + B + C) · (D + F + G) · (A + G + K) · (B + P + Z) · (C + U + X)

Discussion

Is there an inherent difference between

being creative / brilliant

and

being able to appreciate creativity / brilliance?

What is a computational analogue of this phenomenon?

A Proposal

Brilliance = Ability to find
“needle in a haystack”

Comments??

Beethoven found
“satisfying assignments”
to our neural circuits
for music appreciation

There are many computational problems
where finding a solution involves “finding a
needle in a haystack”….

CLIQUE Problem

 In this social network,
is there a CLIQUE with
5 or more students?

 CLIQUE: Group of students,
every pair of whom are friends

 What is a good algorithm for
detecting cliques?

 How does efficiency depend
on network size and desired
clique size?

Rumor mill problem

 Social network for COS 116
 Each node represents a student
 Two nodes connected by edge

if those students are friends
 Johanna starts a rumor
 Will it reach Kieran?
 Suggest an algorithm
 How does running time depend

on network size?
 Internet servers solve this

problem all the time
(“traceroute” in Lab 9).

http://princeton.facebook.com/photo.php?pid=35093314&id=23447917&op=1&view=all&subj=1111165
http://princeton.facebook.com/photo.php?pid=30545835&id=1112199&op=1&view=user&subj=1112199
http://princeton.facebook.com/photo.php?pid=30775654&id=1107118&op=1&view=user&subj=1107118
http://princeton.facebook.com/photo.php?pid=30514047&id=1108245&op=1&view=user&subj=1108245
http://princeton.facebook.com/photo.php?pid=30333719&id=1106424&op=1&view=user&subj=1106424
http://princeton.facebook.com/photo.php?pid=30812926&id=1110830&op=1&view=all&subj=1111304

Exhaustive Search /
Combinatorial Explosion

Naïve algorithms for many “needle in a haystack”
tasks involve checking all possible answers 
exponential running time.

 Ubiquitous in the computational universe
 Can we design smarter algorithms (as for

“Rumor Mill”)? Say, n2 running time.

Harmonious Dorm Floor

Given: Social network involving n students.

Edges correspond to pairs of students
who don’t get along.

Decide if there is a set of k students who
would make a harmonious group
(everybody gets along).

Just the Clique problem in disguise!

Traveling Salesman Problem
(aka UPS Truck problem)

 Input: n points and
all pairwise inter-point
distances, and
a distance k

 Decide: is there a path
that visits all the points
(“salesman tour”) whose
total length is at most k?

Finals scheduling

 Input: n students, k classes, enrollment lists,
m time slots in which to schedule finals

 Define “conflict”: a student is in two classes that
have finals in the same time slot

 Decide: if schedule with at most 100 conflicts
exists?

The P vs NP Question

 P: problems for which solutions can be found in
polynomial time (nc where c is a fixed integer and n is
“input size”). Example: Rumor Mill

 NP: problems where a good solution can be checked in
nc time. Examples: Boolean Satisfiability, Traveling
Salesman, Clique, Finals Scheduling

 Question: Is P = NP?
 “Can we automate brilliance?”

(Note: Choice of computational model ---
Turing-Post, pseudocode, C++ etc. --- irrelevant.)

NP-complete Problems

Problems in NP that are “the hardest”
 If they are in P then so is every NP problem.

Examples: Boolean Satisfiability, Traveling Salesman, Clique,

Finals Scheduling, 1000s of others

How could we possibly prove these problems
are “the hardest”?

“Reduction”

“If you give me a place to
stand, I will move the earth.”
– Archimedes (~ 250BC)

“If you give me a polynomial-time algorithm
for Boolean Satisfiability, I will give you a
polynomial-time algorithm for every NP
problem.” --- Cook, Levin (1971)

“Every NP problem is a satisfiability
problem in disguise.”

Dealing with NP-complete problems

1. Heuristics (algorithms that produce
reasonable solutions in practice)

2. Approximation algorithms (compute
provably near-optimal solutions)

Computational Complexity Theory:

Study of Computationally Difficult problems.

 Study matter → look at mass, charge, etc.

 Study processes → look at computational difficulty

A new lens on the world?

Example 1: Economics

General equilibrium theory:

 Input: n agents, each has some initial
endowment (goods, money, etc.) and
preference function

 General equilibrium: system of prices such that
for every good, demand = supply.

 Equilibrium exists [Arrow-Debreu, 1954].
Economists assume markets find it
(“invisible hand”)

 But, no known efficient algorithm to compute it.
How does the market compute it?

Example 2: Factoring problem

Given a number n, find two numbers p, q (neither
of which is 1) such that n = p x q.

Any suggestions how to solve it?

Fact: This problem is believed to be hard.
It is the basis of much of cryptography.
(More next time.)

Example 3: Quantum Computation

 Central tenet of quantum mechanics:
when a particle goes from A to B, it takes
all possible paths all at the same time

 [Shor’97] Can use quantum behavior to efficiently factor
integers (and break cryptosystems!)

 Can quantum computers be built, or is quantum
mechanics not a correct description of the world?

A
B

Peter Shor

Example 4: Artificial Intelligence

What is computational complexity of
language recognition?

Chess playing?

Etc. etc.

Potential way to show the brain is not a computer:
Show it routinely solves some problem that provably takes
exponential time on computers.

(Will talk more about AI in a couple weeks)

Why is P vs NP a Million-dollar
open problem?

 If P = NP then Brilliance becomes routine
(best schedule, best route, best design,
best math proof, etc…)

 If P ≠ NP then we know something
 new and fundamental
not just about computers but about the world
(akin to “Nothing travels faster than light”).

Next time: Cryptography (practical
use of computational complexity)

