Memory; Sequential & Clocked Circuits; Finite State Machines

COS 116: 3/25/2008

Sanjeev Arora

Midterm grade Criterion:

58-65: A 40-44: B-55-57: A- 33-39: C 50-54: B+ 26--32: D

45-49: B 25 and below: F

Recap: Boolean Logic

Boolean Expression

$$E = S AND \overline{D}$$

Boolean Circuit

Truth table:

Value of E for every possible D, S. TRUE=1; FALSE= 0.

D	S	Ш
0	0	0
0	1	1
1	0	0
1	1	0

Truth table has 2^k rows if the number of variables is k

Boole's reworking of Clarke's "proof" of existence of God (see handout)

- General idea: Try to prove that Boolean expressions $E_1, E_2, ..., E_k$ cannot simultaneously be true
- Method: Show $E_1 \cdot E_2 \cdot ... \cdot E_k = 0$
- Discussion: What exactly does Clarke's "proof" prove? How convincing is such a proof to you?

Also: Do Google search for "Proof of God's Existence."

Combinational circuit for binary addition?

Want to design a circuit to add any two N-bit integers.

Is the truth table method useful for N=64?

Modular design

Have small number of basic components.

Put them together to achieve desired functionality

Basic principle of modern industrial design; recurring theme in next few lectures.

Modular design for N-bit adder

$$\mathbf{S}_{\mathbf{N}}$$
 $\mathbf{S}_{\mathbf{N-1}}$ $\mathbf{S}_{\mathbf{N-2}}$... $\mathbf{S}_{\mathbf{1}}$ $\mathbf{S}_{\mathbf{0}}$

Suffices to use *N* 1-bit adders!

1-bit adder

Do yourself: Write truth table, circuit.

A Full Adder (from handout)

Timing Diagram

NOT gate

Memory

Rest of this lecture: How boolean circuits can have "memory".

What do you understand by 'memory"?

How can you tell that a 1-year old child has it?

Behaviorist's answer: His/her actions depend upon past events.

v

Why combinational circuits have no "memory"

Boolean gates connected by wires

Wires: transmit voltage (and hence value)

Important: no loops allowed

Output is determined by current inputs; 'no "memory" of past values of the inputs.

Today: Circuits with loops; aka "Sequential Circuits"

Matt likes Sue but he doesn't like changing his mind

Represent with a circuit: Matt will go to the party if Sue goes or if he already wanted to go

Is this well-defined?

Sequential Circuits

- Circuits with AND, OR and NOT gates.
- Cycles are allowed (ie outputs can feed back into inputs)
- Can exhibit "memory".
- Sometimes may have "undefined" values

Enter Rita

Matt will go to the party if Sue goes OR if the following holds: if Rita does not go and he already wanted to go.

R, S: "control" inputs

What combination of R, S changes M?

R-S Flip-Flop

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if both are 0), M just remembers its value

A more convenient form of memory

No "undefined" outputs ever!

- If Write = 0, M just keeps its value. (It ignores D.)
- If Write = 1, then M becomes set to D

"Data Flip-Flop" or "D flip flop"; Can be implemented using R-S flip flop.

"Register" with 4 bits of memory

What controls the "Write" signal?

- Often, the system clock!
- "clock" = device that sends out a fluctuating voltage signal that looks like this

"Computer speed" often refers to the clock frequency (e.g. 2.4GHz)

The "symphony" inside a computer

Clocked Sequential Circuits

Synchronous Sequential Circuit

Shorthand

1974	Intel 8080	2 MHz (Mega = Million)
1981	Original IBM PC	4.77 MHz
1993	Intel Pentium	66 MHz
2005	Pentium 4	3.4 GHz (Giga = Billion)

Heinrich Hertz 1857-94

What limits clock speed?

Delays in combinational logic (remember the adder)

During 1 clock cycle of Pentium 4, light travels: 4 inches

Finite State Machines

Read handout (Brian Hayes article) for next time.

Example: State diagram for automatic door

No Person Detected