COS 116: The Computational Universe

Sanjeev Arora COS116: 2/5/08

COS 116: The Computational Universe

- Instructor: Sanjeev Arora
- Preceptors:
 - Ming-Tang Chen (mingchen@princeton)
 - Soner Sevinc (ssevinc@princeton)
 - □ Harlan Yu (harlanyu@princeton)
- Labs (room could still change)
 - □ Tues 7:30-10:30pm (Friend 007)
 - □ Wed 7:30-10:30pm (Friend 005)
- This week: Take-home lab (see handout)
- FILL OUT QUESTIONNAIRE

Ancient dream of man: "Breathe life into matter"

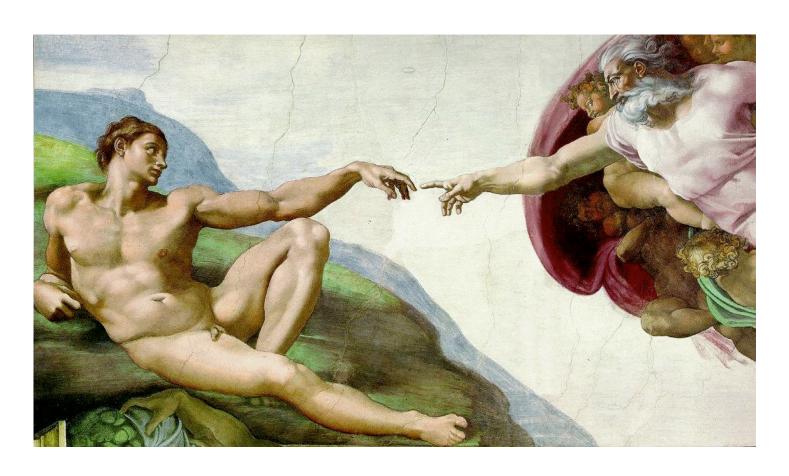
Golem (Jewish mythology)

"Automata", (South Germany or Spain, c. 1560)

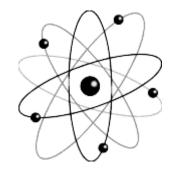
Also,chess automata

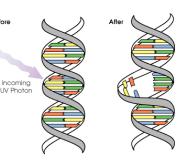
Frankenstein (Mary Shelley,

1818)



Robot (Karel Capek, 1921)

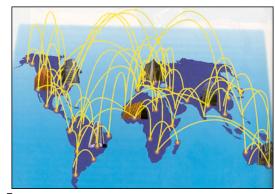

"Breathe life into matter" — Another perspective



"Breathe life into matter" – A 20th century perspective

"Matter": Atoms, molecules, quantum mechanics, relativity ...

■ "Life": Cells, nucleus, DNA, RNA, ...


"Breath life into matter": Computation

One interpretation: Make matter do useful, interesting things on its own

Computational Universe

Some important distinctions

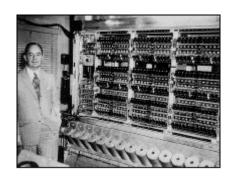
Computer Science

vs. Computer Programming (Java, C++, etc.)

Notion of computation

vs. Concrete
Implementations of
Computation (Silicon chips,
robots, Xbox, etc.)

No programming in this course!


- Not necessary for conceptual understanding
- Gives us more time for a broader coverage of computer science (broader than COS126!)
- No significant advantage to those who have prior programming experience

Some labs/lectures use "pseudocode"

Brief history of computers / computation

- Technological:
 - Clocks
 - □ Clockwork "Automata"
 - Mechanized looms, steam engines (18th century)
 - Vacuum tubes, electronic calculators (1910-1930's)
 - □ ENIAC (1945)
 - □ von Neumann Computer (1949, Princeton)

Brief history of computers / computation (cont'd)

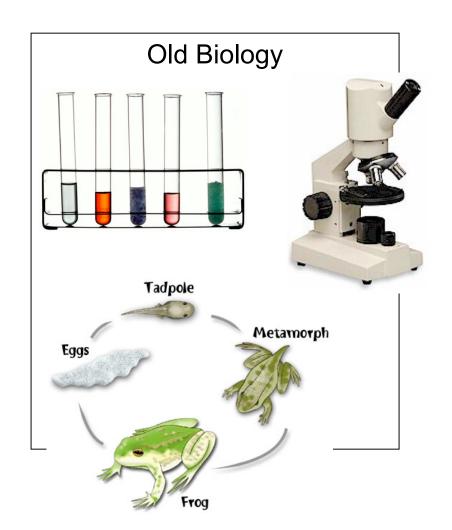
- Intellectual
 - Ancient Greeks, philosophers ("How to formalize thought?")
 - □ Boolean logic (G. Boole, 1815-1864)
 - □ Crisis in math
 - Hilbert: Call to axiomatize math
 - Gödel: Incompleteness theorem
 - □ Lambda calculus (A. Church, 1936)
 - □ Turing machines (A. Turing, 1937)

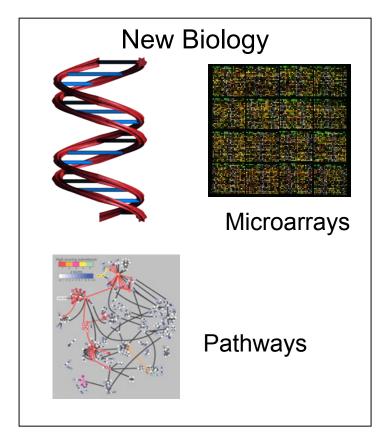
Both at Princeton;

First clear notion of "What is computation?"

Computer Science: A new way of looking at the world

Example 1:


Example 2: Public closed-ballot elections


- Hold an election in this room
 - □ Everyone can speak publicly (i.e. no computers, email, etc.)
 - At the end everyone must agree on who won and by what margin
 - No one should know which way anyone else voted
- Is this possible?
 - ☐ Yes! (A. Yao, Princeton)

М

Example 3: Computational Biology

COS 116: Course structure

- First 10 lectures:
 - Cool things computers do and how
- Next 8 lectures:
 - What's inside computers, Internet, silicon chips
- Last 6 lectures:
 - Complexity, cryptography, viruses, search engines, artificial intelligence

Text

This week: Read pp 3-31 (handout)

This week's lab: Web 2.0

(Take-home Lab; pick up "manual" today)

Lab in Weeks 2 and 3: Scribbler. What determines its behavior?

(Each student gets one robot)

Some details

- 3 hour lab sessions; attendance compulsory:
 - □ Tue 7:30-10:30p, Wed 7:30-10:30pm
- Precepts will be (as needed) at start of labs. Arrive on time!
- This week's lab is take-home: Web 2.0

Not enrolled yet? Got questions? See instructor.

Grading

- Final (in-class): 35%
- Lab reports (including questions): 35%
- Participation (in class, on blog): 15%
- Midterm (in class): 15 %
- Attendance at lectures is expected:
 - Homeworks / lab assignments are handed out and due in lecture
 - □ Will experiment with clickers