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Abstract

This paper is a survey of volume graphics.It includes an introduction to volumetric data and to volume
modeling techniques, such as voxelization, texture mapping, amorphous phenomena, block operations,
constructive solid modeling, and volume sculpting.A comparison between surface graphics and volume
graphics is given, along with a consideration of volume graphics advantages and weaknesses.The paper
concludes with a discussion on special-purpose volume rendering hardware.

1. Introduction

Volume data are 3D entities that may have information inside them, might not consist of surfaces and
edges, or might be too voluminous to be represented geometrically. Volume visualization is a method of
extracting meaningful information from volumetric data using interactive graphics and imaging, and it is
concerned with volume data representation, modeling, manipulation, and rendering [36, 41, 42].
Volume data are obtained by sampling, simulation, or modeling techniques.For example, a sequence of
2D slices obtained from Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) is 3D
reconstructed into a volume model and visualized for diagnostic purposes or for planning of treatment
or surgery. The same technology is often used with industrial CT for non-destructive inspection of
composite materials or mechanical parts.Similarly, confocal microscopes produce data which is
visualized to study the morphology of biological structures.In many computational fields, such as in
computational fluid dynamics, the results of simulation typically running on a supercomputer are often
visualized as volume data for analysis and verification. Recently, many traditional geometric computer
graphics applications, such as CAD and simulation, have exploited the advantages of volume techniques
calledvolume graphicsfor modeling, manipulation, and visualization.

Volume graphics [38], which is an emerging subfield of computer graphics, is concerned with the
synthesis, modeling, manipulation, and rendering of volumetric geometric objects, stored in a volume
buffer of voxels. Unlike volume visualization which focuses primarily on sampled and computed
datasets, volume graphics is concerned primarily with modeled geometric scenes and commonly with
those that are represented in a regular volume buffer. As an approach, volume graphics has the potential
to greatly advance the field of 3D graphics by offering a comprehensive alternative to traditional surface
graphics.

We begin in Section 2 with an introduction to volumetric data.In the following sections we describe the
volumetric approach to several common volume graphics modeling techniques. We describe the
generation of object primitives by voxelization (Section 3), fundamentals of 3D discrete topology
(Section 4), binary voxelization (Section 5), 3D antialiasing and multivalued voxelization (Section 6),
texture and photo mapping and solid-texturing (Section 7), modeling of amorphous phenomena (Section
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8), modeling by block operations and constructive solid modeling (Section 9), and volume sculpting
(Section 10). Then, volume graphics is contrasted with surface graphics (Section 11), and the
corresponding advantages (Section 12) and disadvantages (Section 13) are discussed.In Section 14 we
describe special-purpose volume rendering hardware.

2. Volumetric Data

Volumetric data is typically a setS of samples (x, y, z, v), representing the valuev of some property of
the data, at a 3D location (x, y, z). If the value is simply a 0 or 1, with a value of 0 indicating
background and a value of 1 indicating the object, then the data is referred to as binary data. The data
may instead be multivalued, with the value representing some measurable property of the data,
including, for example, color, density, heat or pressure. The valuev may even be a vector, representing,
for example, velocity at each location.

In general, samples may be taken at purely random locations in space, but in most cases the setS is
isotropic containingsamples taken at regularly spaced intervals along three orthogonal axes. When the
spacing between samples along each axis is a constant, but there may be three different spacing
constants for the three axes, then setS is anisotropic.Since the set of samples is defined on a regular
grid, a 3D array (called alsovolume buffer, cubic frame buffer, 3D raster) is typically used to store the
values, with the element location indicating position of the sample on the grid.For this reason, the setS
will be referred to as the array of valuesS(x, y, z), which is defined only at grid locations.Alternatively,
either rectilinear, curvilinear (structured), or unstructured grids, are employed (e.g., [71]). In a
rectilinear grid the cells are axis-aligned, but grid spacings along the axes are arbitrary. When such a
grid has been non-linearly transformed while preserving the grid topology, the grid becomescurvilinear.
Usually, the rectilinear grid defining the logical organization is calledcomputational space, and the
curvilinear grid is calledphysical space. Otherwise the grid is calledunstructured or irr egular. An
unstructured or irregular volume data is a collection of cells whose connectivity has to be specified
explicitly. These cells can be of an arbitrary shape such as tetrahedra, hexahedra, or prisms.

The arrayS only defines the value of some measured property of the data at discrete locations in space.
A function f (x, y, z) may be defined over R3 in order to describe the value at any continuous location.
The function f (x, y, z) = S(x, y, z) if (x, y, z) is a grid location, otherwisef (x, y, z) approximates the
sample value at a location (x, y, z) by applying some interpolation function toS. There are many
possible interpolation functions.The simplest interpolation function is known as zero-order
interpolation, which is actually just a nearest-neighbor function.The value at any location in R3 is
simply the value of the closest sample to that location. With this interpolation method there is a region
of constant value around each sample inS. Since the samples inS are regularly spaced, each region is
of uniform size and shape.The region of constant value that surrounds each sample is known as avoxel
with each voxel being a rectangular cuboid having six faces, twelve edges, and eight corners.

Higher-order interpolation functions can also be used to definef (x, y, z) between sample points.One
common interpolation function is a piecewise function known asfirst-order interpolation, or trilinear
interpolation. With this interpolation function, the value is assumed to vary linearly along directions
parallel to one of the major axes. Let the point P lie at location (xp, yp, zp) within the regular
hexahedron, known as acell, defined by samplesA throughH . For simplicity, let the distance between
samples in all three directions be 1, with sampleA at (0,0, 0) with a value of vA, and sampleH at
(1, 1, 1)with a value ofvH . The valuevP, according to trilinear interpolation, is then:
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(1)vP = vA (1 − xp)(1 − yp)(1 − zp) + vE (1 − xp)(1 − yp) zp +

vB xp (1 − yp)(1 − zp) + vF xp (1 − yp) zp +

vC (1 − xp) yp (1 − zp) + vG (1 − xp) yp zp +

vD xp yp (1 − zp) + vH xp yp zp

In general,A is at some location (xA, yA, zA), andH is at (xH ,yH ,zH ). In this case,xp in Equation 1

would be replaced by
(xp − xA)

(xH − xA)
, with similar substitutions made foryp andzp.

Over the years many techniques have been developed to visualize 3D data.Since methods for
displaying geometric primitives were already well-established, most of the early methods involve
approximating a surface contained within the data using geometric primitives [4, 47]. When volumetric
data are visualized using a surface rendering technique, a dimension of information is essentially lost.
In response to this, volume rendering techniques were developed that attempt to capture the entire 3D
data in a single 2D image [12, 36, 45, 62, 79, 86].Volume rendering convey more information than
surface rendering images, but at the cost of increased algorithm complexity, and consequently increased
rendering times.To improve interactivity in volume rendering, many optimization methods as well as
several special-purpose volume rendering machines have been developed (see Section 14).

The 3D raster representation seems to be more natural for empirical imagery than for geometric objects,
due to its ability to represent interiors and digital samples.Nonetheless, the advantages of this
representation are also attracting traditional surface-based applications that deal with the modeling and

Figure 1: A volume-sampled plane within a volumetric cloud over volumetric model of terrain en-
hanced with photo mapping of satellite images.
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rendering of synthetic scenes made out of geometric models.The geometric model isvoxelized (3D
scan-converted) into a set of voxels that ‘‘best’’ approximate the model.Each of these voxels is then
stored in the volume buffer together with the voxel pre-computed view-independent attributes. The
voxelized model can be either binary (see [5, 30-32] and Section 5) or volume sampled (see [72, 82] and
Section 6) which generates alias-free density voxelization of the model.Some surface-based application
examples are the rendering of fractals [51], hyper textures [54], fur [28], gases [15], and other complex
models [69] including terrain models for flight simulators (see Figures 1 and 2) [6, 38, 81, 87].and
CAD models (see Figure 3).Furthermore, in many applications involving sampled data, such as medial
imaging, the data need to be visualized along with synthetic objects that may not be available in digital
form, such as scalpels, prosthetic devices, injection needles, radiation beams, and isodose surfaces.
These geometric objects can be voxelized and intermixed with the sampled organ in the voxel buffer
[35].

3. Voxelization

An indispensable stage in volume graphics is the synthesis of voxel-represented objects from their
geometric representation.This stage, which is calledvoxelization, is concerned with converting
geometric objects from their continuous geometric representation into a set of voxels that ‘‘best’’
approximates the continuous object.As this process mimics the scan-conversion process that pixelizes
(rasterizes) 2D geometric objects, it is also referred to as3D scan-conversion. In 2D rasterization the
pixels are directly drawn onto the screen to be visualized and filtering is applied to reduce the aliasing
artifacts. However, the voxelization process does not render the voxels but merely generates a database
of the discrete digitization of the continuous object.

Figure 2: A volumetric model of terrain enhanced with photo mapping of satellite images. The build-
ings are synthetic voxel models raised on top of the terrain. The voxelized terrain has been mapped with
aerial photos during the voxelization stage.
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Figure 3: Volume-sampled bolt and nut generated by a sequence of CSG operations on hexagonal,
cylindrical, and helix primitives, reflected on a volume-sampled mirror.

Intuitively, one would assume that a proper voxelization simply ‘‘selects’’ all voxels which are met (if
only partially) by the object body. Although this approach could be satisfactory in some cases, the
objects it generates are commonly too coarse and include more voxels than are necessary. For example,
when a 2D curve is rasterized into a connected sequence of pixels, the discrete curve does not ‘‘cover’’
the entire continuous curve, but is connected, concisely and successfully ‘‘separating’’ both ‘‘sides’’ of
the curve [7].

One practical meaning of separation is apparent when a voxelized scene is rendered by casting discrete
rays from the image plane to the scene.The penetration of the background voxels (which simulate the
discrete ray traversal) through the voxelized surface causes the appearance of a hole in the final image of
the rendered surface. Anothertype of error might occur when a 3D flooding algorithm is employed
either to fill an object or to measure its volume, surface area, or other properties. In this case the
nonseparability of the surface causes a leakage of the flood through the discrete surface.

Unfortunately, the extension of the 2D definition of separation to the third dimension and voxel surfaces
is not straightforward, since voxelized surfaces cannot be defined as an ordered sequence of voxels and
a voxel on the surface does not have a specific number of adjacent surface voxels. Furthermore,there
are important topological issues, such as the separation of both sides of a surface, which cannot be well-
defined by employing 2D terminology. The theory that deals with these topological issues is called3D
discrete topology. We sketch below some basic notions and informal definitions used in this field.

4. Fundamentals of 3D Discrete Topology

The 3D discrete space is a set of integral grid points in 3D Euclidean space defined by their Cartesian
coordinates (x, y, z). A voxel is the unit cubic volume centered at the integral grid point. The voxel
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value is mapped onto {0,1}: the voxels assigned ‘‘1’ ’ are called the ‘‘black’’ voxels representing opaque
objects, and those assigned ‘‘0’ ’ are the ‘‘white’’ voxels representing the transparent background.In
Section 6 we describe non-binary approaches where the voxel value is mapped onto the interval [0,1]
representing either partial coverage, variable densities, or graded opacities. Due to its larger dynamic
range of values, this approach supports 3D antialiasing and thus supports higher quality rendering.

Tw o voxels are26-adjacentif they share either a vertex, an edge, or a face (see Figure 4). Every voxel
has 26 such adjacent voxels: eight share a vertex (corner) with the center voxel, twelve share an edge,
and six share a face. Accordingly, face-sharing voxels are defined as6-adjacent, and edge-sharing and
face-sharing voxels are defined as18-adjacent. The prefixN is used to define the adjacency relation,
whereN = 6, 18,or 26. A sequence of voxels having the same value (e.g., ‘‘black’’) is called anN-path
if all consecutive pairs areN-adjacent. Aset of voxelsW is N-connectedif there is anN-path between
ev ery pair of voxels inW (see Figure 4).An N-connected componentis a maximalN-connected set.

Given a  2D discrete 8-connected black curve, there are sequences of 8-connected white pixels
(8-component) that pass from one side of the black component to its other side without intersecting it.
This phenomenon is a discrete disagreement with the continuous case where there is no way of
penetrating a closed curve without intersecting it.To avoid such a scenario, it has been the convention
to define ‘‘opposite’’ types of connectivity for the white and black sets.‘‘ Opposite’’ types in 2D space
are 4 and 8, while in 3D space 6 is ‘‘opposite’’ to 26 or to 18.

Assume that a voxel space, denoted byΣ, includes one subset of ‘‘black’’ voxels S. If Σ − S is not N-
connected, that is,Σ − S consists of at least two white N-connected components, thenS is said to beN-
separating in Σ. Loosely speaking, in 2D, an 8-connected black path that divides the white pixels into
two groups is 4-separating and a 4-connected black path that divides the white pixels into two groups is
8-separating. Thereare no analogous results in 3D space.

Let W be anN-separating surface. Avoxel p ∈ W is said to be anN-simple voxelif W − p is still N-
separating. AnN-separating surface is calledN-minimal if it does not contain any N-simple voxel. A
cover of a continuous surface is a set of voxels such that every point of the continuous surface lies in a
voxel of the cover. A cover is said to be aminimal cover if none of its subsets is also a cover. The cover
property is essential in applications that employ space subdivision for fast ray tracing [18].The
subspaces (voxels) which contain objects have to be identified along the traced ray. Note that a cover is

6-Connected

18-Connected

26-Connected

Figure 4: 6-, 18-, and 26-connected paths
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not necessarily separating, while on the other hand, as mentioned above, it may include simple voxels.
In fact, even a minimal cover is not necessarilyN-minimal for any N [7].

5. Binary Voxelization

An early technique for the digitization of solids was spatial enumeration which employs point or cell
classification methods in either an exhaustive fashion or by recursive subdivision [44]. However,
subdivision techniques for model decomposition into rectangular subspaces are computationally
expensive and thus inappropriate for medium or high resolution grids.Instead, objects should be
directly voxelized, preferably generating anN-separating,N-minimal, and covering set, whereN is
application dependent. The voxelization algorithms should follow the same paradigm as the 2D scan-
conversion algorithms; they should be incremental, accurate, use simple arithmetic (preferably integer
only), and have a complexity that is not more than linear with the number of voxels generated.

The literature of 3D scan-conversion is relatively small. Danielsson [11] and Mokrzycki [49] developed
independently similar 3D curve algorithms where the curve is defined by the intersection of two implicit
surfaces. Voxelization algorithms have been developed for 3D lines [8], 3D circles, and a variety of
surfaces and solids, including polygons, polyhedra, and quadric objects [30].Efficient algorithms have
been developed for voxelizing polygons using an integer-based decision mechanism embedded within a
scan-line filling algorithm [31] or with an incremental pre-filtered algorithm [10], for parametric curves,
surfaces, and volumes using an integer-based forward differencing technique [32], and for quadric
objects such as cylinders, spheres, and cones using ‘‘weaving’’ algorithms by which a discrete
circle/line sweeps along a discrete circle/line [5].Figure 2 consists of a variety of objects (polygons,
boxes, cylinders) voxelized using these methods.These pioneering attempts should now be followed by
enhanced voxelization algorithms that, in addition to being efficient and accurate, will also adhere to the
topological requirements of separation, coverage, and minimality.

6. 3D Antialiasing and Multivalueded Voxelization

The previous section discussed binary voxelization, which generates topologically and geometrically
consistent models, but exhibits object space aliasing.These algorithms have used a straightforward
method of sampling in space, calledpoint sampling. In point sampling, the continuous object is
evaluated at the voxel center, and the value of 0 or 1 is assigned to the voxel. Becauseof this binary
classification of the voxels, the resolution of the 3D raster ultimately determines the precision of the
discrete model.Imprecise modeling results in jagged surfaces, known asobject space aliasing(see
Figure 2). In this section, we first present a 3D object-space antialiasing technique.It performs
antialiasing once, on a 3D view-independent representation, as part of the modeling stage.Unlike
antialiasing of 2D scan-converted graphics, where the main focus is on generating aesthetically pleasing
displays, the emphasis in antialiased 3D voxelization is on producing alias-free 3D models that are
stored in the view-independent volume buffer for various volume graphics manipulations, including but
not limited to the generation of aesthetically pleasing displays (see Figure 1).

To reduce object space aliasing, avolume samplingtechnique has been developed [82], which estimates
the density contribution of the geometric objects to the voxels. Thedensity of a voxel is attenuated by a
filter weight function which is proportional to the distance between the center of the voxel and the
geometric primitive. To improve performance, precomputed lookup tables of densities for a predefined
set of geometric primitives can be used to select the density value of each voxel. For each voxel visited
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by the binary voxelization algorithm, the distance to the predefined primitive is used as an index into a
lookup table of densities.

Since voxelized geometric objects are represented as volume rasters of density values, they can
essentially be treated as sampled or simulated volume datasets, such as 3D medical imaging datasets,
and one of many volume rendering techniques for image generation can be employed. Oneprimary
advantage of this approach is that volume rendering or volumetric global illumination carries the
smoothness of the volume-sampled objects from object space over into its 2D projection in image space
[84]. Hence,the silhouette of the objects, reflections, and shadows are smooth.In addition, CSG
operations between two volume-sampled geometric models are accomplished at the voxel level after
voxelization, thereby reducing the original problem of evaluating a CSG tree of such operations down to
a fuzzy Boolean operation between pairs of non-binary voxels [83] (see Section 9).Volume-sampled
models are also suitable for intermixing with sampled or simulated datasets, since they can be treated
uniformly as one common data representation.Furthermore, volume-sampled models lend themselves
to alias-free multi-resolution hierarchy construction [83].

Further study of filtered voxelization has been conducted by Sramek and Kaufman [72, 74].The basic
idea has been that in voxelization filter design one needs to consider the visualization techniques used
(i.e., data interpolation and normal estimation).They showed that a combination of first order filters on
voxelization and visualization, with proper parameters, results in rendered images with negligible error
in estimating object surface position and normal direction.More specifically, if a trilinear interpolation
is used for reconstruction of the continuous volume, with subsequent surface detection by thresholding
and normal gradient calculation by central differences, best results are obtained if the density of the
voxelized object near its surface is linear along the surface normal direction (e.g., [27, 73]).This linear
profile results from convolution of the object with a 1D box filter applied along a direction
perpendicular to the surface, called oriented box filter [72].Furthermore, a Gaussian surface density
profile combined with tricubic interpolation and Gabor derivative reconstruction outperforms the linear
density profile, but for a sharp increase in the computation time.

A C++ library for filtered voxelization of objects, vxt, has been developed [75]. It provides the user
with an extensible set of easy-to-use tools and routines for alias-free voxelization of analytically defined
monochromatic and color objects.Thus, resulting volumetric data represent a suitable input for both
software and hardware volume rendering systems.The library provides for voxelization of primitive
objects; however, when supplemented by a suitable parser, it represents a basis for voxelization of
complex models defined in various graphics formats.

7. Texture Mapping

One type of object complexity involves objects that are enhanced with texture mapping, photo mapping,
environment mapping, or solid texturing. Texture mapping is commonly implemented during the last
stage of the rendering pipeline, and its complexity is proportional to the object complexity. In volume
graphics, however, texture mapping is performed during the voxelization stage, and the texture color is
stored in each voxel in the volume buffer.

In photo mapping six orthogonal photographs of the real object are projected back onto the voxelized
object. Oncethis mapping is applied, it is stored with the voxels themselves during the voxelization
stage, and therefore does not degrade the rendering performance.Te xture and photo mapping are also
viewpoint independent attributes implying that once the texture is stored as part of the voxel value,
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texture mapping need not be repeated.This important feature is exploited, for example, by voxel-based
flight simulators (see Figures 1 and 2) and in CAD systems (see Figure 3).

A central feature of volumetric representation is that, unlike surface representation, it is capable of
representing inner structures of objects, which can be revealed and explored with appropriate
manipulation and rendering techniques.This capability is essential for the exploration of sampled or
computed objects.Synthetic objects are also likely to be solid rather than hollow. One method for
modeling various solid types is solid texturing, in which a function or a 3D map models the color of the
objects in 3D (see Figure 3).During the voxelization phase each voxel belonging to the objects is
assigned a value by the texturing function or the 3D map.This value is then stored as part of the voxel
information. Again, since this value is view independent, it does not have to be recomputed for every
change in the rendering parameters.

8. Amorphous Phenomena

While translucent objects can be represented by surface methods, these methods cannot efficiently
support the modeling and rendering of amorphous phenomena (e.g., clouds, fire, smoke) that are
volumetric in nature and lack any tangible surfaces. A common modeling and rendering approach is
based on a volumetric function that, for any input point in 3D, calculates some object features such as
density, reflectivity, or color (see Figure 1).These functions can then be rendered by ray casting, which
casts a ray from each pixel into the function domain. Along the passage of the ray, at constant intervals
the function is evaluated to yield a sample. All samples along each ray are combined to form the pixel
color. Some examples for the use of this or similar techniques are the rendering of fractals [22],
hypertextures [54], fur [28], and gases [15].

The process of function evaluation at each sample point in 3D has to be repeated for each image
generated. In contrast, the volumetric approach allows the pre-computation of these functions at each
grid point of the volume buffer. The resulting volumetric dataset can then be rendered from multiple
viewpoints without recomputing the modeling function. As in other volume graphics techniques,
accuracy is traded for speed, due to the resolution limit.Instead of accurately computing the function at
each sample point, some type of interpolation from the precomputed grid values is employed.

9. Block Operations and Constructive Solid Modeling

The presortedness of the volume buffer naturally lends itself to grouping operations that can be
exploited in various ways. For example, by generating multi-resolution volume hierarchy that can
support time critical and space critical volume graphics applications can be better supported.The basic
idea is similar to that of level-of-detail surface rendering which has recently proliferated [16, 25, 61, 65,
78], in which the perceptual importance of a given object in the scene determines its appropriate level-
of-detail representation.One simple approach is the 3D "mip-map" approach [46, 63], where every
level of the hierarchy is formed by averaging several voxels from the previous level. A better approach
is based on sampling theory, in which an object is modeled with a sequence of alias-free volume buffers
at different resolutions using the volume-sampled voxelization approach [23].To accomplish this, high
frequencies that exceed the Nyquist frequency of the corresponding volume buffer are filtered out by
applying an ideal low-pass filter (sinc) with infinite support. In practice, the ideal filter is approximated
by filters with finite support.Low sampling resolution of the volume buffer corresponds to a lower
Nyquist frequency, and therefore requires a low-pass filter with wider support for good approximation.
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As one moves up the hierarchy, low-pass filters with wider and wider support are applied.Compared to
the level-of-detail hierarchy in surface graphics, the multi-resolution volume buffers are easy to generate
and to spatially correspond neighboring levels, and are also free of object space aliasing.Furthermore,
arbitrary resolutions can be generated, and errors caused by a non-ideal filter do not propagate and
accumulate from level to lev el. Dependingon the required speed and accuracy, a variety of low-pass
filters (zero order, cubic, Gaussian) can be applied.

An intrinsic characteristic of the volume buffer is that adjacent objects in the scene are also represented
by neighboring memory cells. Therefore, rasters lend themselves to various meaningful grouping-based
operations, such asbitblt in 2D, or voxblt in 3D [37]. These include transfer of volume buffer
rectangular blocks (cuboids) while supporting voxel-by-voxel operations between source and
destination blocks.Block operations add a variety of modeling capabilities which aid in the task of
image synthesis and form the basis for the efficient implementation of a 3D ‘‘room manager’’, which is
the extension of window management to the third dimension.

Since the volume buffer lends itself to Boolean operations that can be performed on a voxel-by-voxel
basis during the voxelization stage, it is advantageous to use CSG as the modeling paradigm.
Subtraction, union, and intersection operations between two voxelized objects are accomplished at the
voxel lev el, thereby reducing the original problem of evaluating a CSG tree during rendering time down
to a 1D Boolean operation between pairs of voxels during a preprocessing stage.

For two point-sampled binary objects the Boolean operations of CSG orvoxblt are trivially defined.
However, the Boolean operations applied to volume-sampled models are analogous to those of fuzzy set
theory (cf. [13]). The volume-sampled model is a density functiond(x) over R3, whered is 1 inside the
object, 0 outside the object, and 0< d < 1  within the "soft" region of the filtered surface. Someof the
common operations, intersection, complement, difference, and union, between two objectsA andB are
defined as follows:

(16)dA∩ B(x) ≡ min ( dA(x), dB(x))

(17)dA(x) ≡ 1 − dA(x)

(18)dA−B(x) ≡ min (dA(x), 1 − dB(x))

(19)dA∪ B(x) ≡ max (dA(x), dB(x))

The only law of set theory that is no longer true is the excluded-middle law (i.e., A ∩ A ≠ �
and

A ∪ A ≠ Universe). Theuse of the min and max functions causes discontinuity at the region where the
soft regions of the two objects meet, since the density value at each location in the region is determined
solely by one of the two overlapping objects.

Complex geometric models can be generated by performing the CSG operations in Equations 16-19
between volume-sampled primitives. Volume-sampled models can also function as matte volumes [12]
for various matting operations, such as performing cut-aways and merging multiple volumes into a
single volume using the union operation.However, in order to preserve continuity on the cut-away
boundaries between the material and the empty space, one should use an alternative set of Boolean
operators based on algebraic sum and algebraic product [13, 20] :

(20)dA∩ B(x) ≡ dA(x) dB(x)
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(21)dA(x) ≡ 1 − dA(x)

(22)dA−B(x) ≡ dA(x) − dA(x) dB(x)

(23)dA∪ B(x) ≡ dA(x) + dB(x) − dA(x) dB(x)

Unlike the min and max operators, algebraic sum and product operators result inA ∪ A ≠ A, which is
undesirable. Aconsequence, for example, is that during modeling via sweeping, the resulting model is
sensitive to the sampling rate of the swept path [83].

Once a CSG model has been constructed in voxel representation, it is rendered in the same way any
other volume buffer is. This makes, for example, volumetric ray tracing of constructive solid models
straightforward [70] (see Figure 3).

10. Volume Sculpting

Surface-based sculpting has been studied extensively (e.g., [9, 66]), while volume sculpting has been
recently introduced for clay or wax-like sculptures [17] and for comprehensive detailed sculpting [85].
The latter approach is a free-form interactive modeling technique based on the metaphor of sculpting
and painting a voxel-based solid material, such as a block of marble or wood. Thereare two
motivations for this approach.First, modeling topologically complex and highly-detailed objects are
still difficult in most CAD systems.Second, sculpting has shown to be useful in volumetric
applications. For example, scientists and physicians often need to explore the inner structures of their
simulated or sampled datasets by gradually removing material.

Real-time human interaction could be achieved in this approach, since the actions of sculpting (e.g.,
carving, sawing) and painting are localized in the volume buffer, a localized rendering can be employed
to reproject only those pixels that are affected. Carvingis the process of taking a pre-existing volume-
sampled tool to chip or chisel the object bit by bit.Since both the object and tool are represented as
independent volume buffers, the process of sculpting involves positioning the tool with respect to the
object and performing a Boolean subtraction between the two volumes. Sawing is the process of
removing a whole chunk of material at once, much like a carpenter sawing off a portion of a wood
piece. Unlike carving, sawing requires generating the volume-sampled tool on-the-fly, using a user
interface. To prevent object space aliasing and to achieve interactive speed, 3D splatting is employed.

11. Surface Graphics vs. Volume Graphics

Contemporary 3D graphics has been employing an object-based approach at the expense of maintaining
and manipulating a display list of geometric objects and regenerating the frame-buffer after every
change in the scene or viewing parameters.This approach, termedsurface graphics, is supported by
powerful geometry engines which have flourished in the past decade, making surface graphics the state-
of-the-art in 3D graphics.

Surface graphics strikingly resembles vector graphics that prevailed in the sixties and seventies, and
employed vector drawing devices. Like vector graphics, surface graphics represents the scene as a set of
geometric primitives kept in a display list. In surface graphics, these primitives are transformed,
mapped to screen coordinates, and converted by scan-conversion algorithms into a discrete set of pixels.
Any change to the scene, viewing parameters, or shading parameters requires the image generation
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system to repeat this process.Like vector graphics that did not support painting the interior of 2D
objects, surface graphics generates merely the surfaces of 3D objects and does not support the rendering
of their interior.

Instead of a list of geometric objects maintained by surface graphics, volume graphics employs a 3D
volume buffer as a medium for the representation and manipulation of 3D scenes.A 3D scene is
discretized earlier in the image generation sequence, and the resulting 3D discrete form is used as a
database of the scene for manipulation and rendering purposes, which in effect decouples discretization
from rendering.Furthermore, all objects are converted into one uniform meta-object − the voxel. Each
voxel is atomic and represents the information about at most one object that resides in that voxel.

Volume graphics offers similar benefits to surface graphics, with several advantages that are due to the
decoupling, uniformity, and atomicity features.The rendering phase is viewpoint independent and
insensitive to scene complexity and object complexity. It supports Boolean and block operations and
constructive solid modeling. When 3D sampled or simulated data are used, such as that generated by
medical scanners (e.g., CT, MRI) or scientific simulations (e.g., CFD), volume graphic is suitable for
their representation too. It is capable of representing amorphous phenomena and both the interior and
exterior of 3D objects.These features of volume graphics as compared with surface graphics are
discussed in detail in Section 12.Several weaknesses of volume graphics are related to the discrete
nature of the representation, for instance, transformations and shading are performed in discrete space.
In addition, this approach requires substantial amounts of storage space and specialized processing.
These weaknessesare discussed in detail in Section 13.

Table 1 contrasts vector graphics with raster graphics.A primary appeal of raster graphics is that it
decouples image generation from screen refresh, thus making the refresh task insensitive to the scene
and object complexities. In addition, the raster representation lends itself to block operations, such as
bitblt and quadttree.Raster graphics is also suitable for displaying 2D sampled digital images, and thus

Table 1: Comparison between vector graphics and raster graphics
and between surface graphics and volume graphics.

2D Vector Graphics Raster Graphics

Scene/object complexity − +
Block operations − +

Sampled data − +
Interior − +

Memory and processing + −
Aliasing + −

Transformations + −
Objects + −

3D Surface Graphics Volume Graphics
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provides the ideal environment for mixing digital images with synthetic graphic. Unlike vector graphics,
raster graphics provides the capability to present shaded and textured surfaces, as well as line drawings.
These advantages, coupled with advances in hardware and the development of antialiasing methods,
have led raster graphics to supersede vector graphics as the primary technology for computer graphics.
The main weaknesses of raster graphics are the large memory and processing power it requires for the
frame buffer, as well as the discrete nature of the image.These difficulties delayed the full acceptance
of raster graphics until the late seventies when the technology was able to provide cheaper and faster
memory and hardware to support the demands of the raster approach.In addition, the discrete nature of
rasters makes them less suitable for geometric operations such as transformations and accurate
measurements, and once discretized, the notion of objects is lost.

The same appeal that drove the evolution of the computer graphics world from vector graphics to raster
graphics, once the memory and processing power became available, is driving a variety of applications
from a surface-based approach to a volume-based approach.Naturally, this trend first appeared in
applications involving sampled or computed 3D data, such as 3D medical imaging and scientific
visualization, in which the datasets are in volumetric form. These diverse empirical applications of
volume visualization still provide a major driving force for advances in volume graphics.

The comparison in Table 1 between vector graphics and raster graphics strikingly resembles a
comparison between surface graphics and volume graphics.Actually Table 1 itself is also used to
contrast surface graphics and volume graphics.

12. Volume Graphics Features

One of the most appealing attributes of volume graphics is its insensitivity to the complexity of the
scene, since all objects have been pre-converted into a finite size volume buffer. Although the
performance of the pre-processing voxelization phase is influenced by the scene complexity [5, 30-32],
rendering performance depends mainly on the constant resolution of the volume buffer and not on the
number of objects in the scene.Insensitivity to the scene complexity makes the volumetric approach
especially attractive for scenes consisting of a large number of objects.

In volume graphics, rendering is decoupled from voxelization and all objects are first converted into one
meta object, the voxel, which makes the rendering process insensitive to the complexity of the objects.
Thus, volume graphics is particularly attractive for objects that are hard to render using conventional
graphics systems.Examples of such objects include curved surfaces of high order and fractals which
require expensive computation of an iterative function for each volume unit [51]. Constructive solid
models are also hard to render by conventional methods, but are straightforward to render in volumetric
representation (see below).

Anti-aliasing and texture mapping are commonly implemented during the last stage of the conventional
rendering pipeline, and their complexity is proportional to object complexity. Solid texturing, which
employs a 3D texture image, has also a high complexity proportional to object complexity. In volume
graphics, however, anti-aliasing, texture mapping, and solid texturing are performed only once - during
the voxelization stage - where the color is calculated and stored in each voxel. Thetexture can also be
stored as a separate volumetric entity which is rendered together with the volumetric object, as in the
VolVis software system for volume visualization [1].

The textured objects in Figure 1, 2 and 3 have been assigned texture during the voxelization stage by
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mapping each voxel back to the corresponding value on a texture map or solid.Once this mapping is
applied, it is stored with the voxels themselves during the voxelization stage, which does not degrade the
rendering performance.In addition, texture mapping and photo mapping are also viewpoint
independent attributes, implying that once the texture is stored as part of the voxel value, texture
mapping need not be repeated.

In anticipation of repeated access to the volume buffer (such as in animation), all viewpoint independent
attributes can be precomputed during the voxelization stage, stored with the voxel, and be readily
accessible for speeding up the rendering.The voxelization algorithm can generate for each object voxel
its color, texture color, normal vector (for visible voxels), antialiasing information [82], and information
concerning the visibility of the light sources from that voxel. Actually, the viewpoint independent parts
of the illumination equation can also be precomputed and stored as part of the voxel value.

Once a volume buffer with precomputed view-independent attributes is available, a rendering algorithm
such as a discrete ray tracing or a volumetric ray tracing algorithm can be engaged. Eitherray tracing
approach is especially attractive for complex surface scenes and constructive solid models, as well as 3D
sampled or computed datasets (see below). Figure3 shows an example of objects that were ray traced
in discrete voxel space.In spite of the complexity of these scenes, volumetric ray tracing time was
approximately the same as for much simpler scenes and significantly faster than traditional space-
subdivision ray tracing methods.Moreover, in spite of the discrete nature of the volume buffer
representation, images indistinguishable from the ones produced by conventional surface-based ray
tracing can be generated by employing, accurate ray tracing, auxiliary object information, or screen
supersampling techniques.

Sampled datasets, such as in 3D medical imaging (see Figure 3), volume microscopy, and geology, and
simulated datasets, such as in computational fluid dynamics, chemistry, and materials simulation are
often reconstructed from the acquired sampled or simulated points into a regular grid of voxels and
stored in a volume buffer. Such datasets provide for the majority of applications using the volumetric
approach. Unlike surface graphics, volume graphics naturally and directly supports the representation,
manipulation, and rendering of such datasets, as well as providing the volume buffer medium for
intermixing sampled or simulated datasets with geometric objects [35], as can be seen in Figure 5.For
compatibility between the sampled/computed data and the voxelized geometric object, the object can be
volume sampled [82] with the same, but not necessarily the same, density frequency as the acquired or
simulated datasets.In volume sampling the continuous object is filtered during the voxelization stage
generating alias-free 3D density primitives. Volume graphics also naturally supports the rendering of
translucent volumetric datasets (see Figures 1 and 5).

A central feature of volumetric representation is that unlike surface representation it is capable of
representing inner structures of objects, which can be revealed and explored with the appropriate
volumetric manipulation and rendering techniques.Natural objects as well as synthetic objects are
likely to be solid rather than hollow. The inner structure is easily explored using volume graphics and
cannot be supported by surface graphics (see Figure 5).Moreover, while translucent objects can be
represented by surface methods, these methods cannot efficiently support the translucent rendering of
volumetric objects, or the modeling and rendering of amorphous phenomena (e.g., clouds, fire, smoke)
that are volumetric in nature and do not contain any tangible surfaces (see Figure 1) [15, 28, 54].

An intrinsic characteristic of rasters is that adjacent objects in the scene are also represented by
neighboring voxels. Therefore, rasters lend themselves to various meaningful block-based operations
which can be performed during the voxelization stage.For example, the 3D counterpart of thebitblt
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Figure 5: Intermixing of a volume-sampled cone with an MRI head using a union operation.

operations, termedvoxblt (voxel block-transfer), can support transfer of cuboidal voxel blocks with a
variety of voxel-by-voxel operations between source and destination blocks [37].This property is very
useful for voxblt and CSG. Once a CSG model has been constructed in voxel representation, it is
rendered like any other volume buffer. This makes rendering of constructive solid models
straightforward.

The spatial presortedness of the volume buffer voxels lends itself to other types of grouping or
aggregation of neighboring voxels. For example, the terrain image shown in Figure 2 was generated by
the voxel-based Hughes Aircraft Co.flight simulator [87]. It simulates a flight over voxel-represented
terrain enhanced with satellite or aerial photo mapping with additional synthetic raised objects, such as
buildings, trees, vehicles, aircraft, clouds and the like. Sincethe information below the terrain surface is
invisible, terrain voxels can be actually represented as tall cuboids extending from sea level to the terrain
height. Theraised and moving objects, however, hav eto be represented in a more conventional voxel-
based form.

Similarly, voxels can be aggregated into super-voxels in a pyramid-like hierarchy. For example, in a
voxel-based flight simulator, the best resolution can be used for takeoff and landing. As the aircraft
ascends, fewer and fewer details need to be processed and visualized, and a lower resolution suffices.
Furthermore, even in the same view, parts of the terrain close to the observer are rendered at high
resolution which deceases towards the horizon. A hierarchical volume buffer can be prepared in advance
or on-the-fly by subsampling or averaging the appropriate size neighborhoods of voxels (see also [23]).

13. Weaknesses of Volume Graphics

A typical volume buffer occupies a large amount of memory. For example, for a medium resolution of
5123, two bytes per voxel, the volume buffer consists of 256M bytes. However, since computer
memories are significantly decreasing in price and increasing in their compactness and speed, such large
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memories are becoming commonplace.This argument echoes a similar discussion when raster graphics
emerged as a technology in the mid-seventies. With the rapid progress in memory price and
compactness, it is safe to predict that, as in the case of raster graphics, memory will soon cease to be a
stumbling block for volume graphics.

The extremely large throughput that has to be handled requires a special architecture and processing
attention (see Section 14 and [36] Chapter 6).Volume engines, analogous to the currently available
geometry (polygon) engines, are emerging. Becauseof the presortedness of the volume buffer and the
fact that only a simple single type of object has to be handled, volume engines are conceptually simpler
to implement than current geometry engines (see Section 14).Volume engines will materialize in the
near future, with capabilities to synthesize, load, store, manipulate, and render volumetric scenes in real
time (e.g., 30 frames/sec), configured as accelerators or co-systems to existing geometry engines.

Unlike surface graphics, in volume graphics the 3D scene is represented in discrete form.This is the
source of many of the problems of voxel-based graphics, which are similar to those of 2D rasters [14].
The finite resolution of the raster poses a limit on the accuracy of some operations, such as volume and
area measurements, that are based on voxel counting.

Since the discrete data is sampled during rendering, a low resolution volume yields high aliasing
artifacts. Thisbecomes especially apparent when zooming in on the 3D raster. When naive rendering
algorithms are used, holes may appear "between" voxels. Nevertheless, this can be alleviated in ways
similar to those adopted by 2D raster graphics, such as employing either reconstruction techniques, a
higher-resolution volume buffer, or volume sampling.

Manipulation and transformation of the discrete volume are difficult to achieve without degrading the
image quality or losing some information.Rotation of rasters by angles other than 90 degrees is
especially problematic since a sequence of consecutive rotations will distort the image.Again, these
can be alleviated in ways similar to the 2D raster techniques.

Once an object has been voxelized, the voxels comprising the discrete object do not retain any
geometric information regarding the geometric definition of the object.Thus, it is advantageous, when
exact measurements are required (e.g., distance, area), to employ conventional modeling where the
geometric definition of the object is available. A voxel-based object is only a discrete approximation of
the original continuous object where the volume buffer resolution determines the precision of such
measurements. Onthe other hand, several measurement types are more easily computed in voxel space
(e.g., mass property, adjacency detection, and volume computation).

The lack of geometric information in the voxel may inflict other difficulties, such as surface normal
computation. Invoxel-based models, a discrete shading method is commonly employed to estimate the
normal from a context of voxels. A variety of image-based and object-based methods for normal
estimation from volumetric data has been devised (see [90], [36, Chapter 4]) and some have been
discussed above. Most methods are based on fitting some type of a surface primitive to a small
neighborhood of voxels.

A partial integration between surface and volume graphics is conceivable as part of an object-based
approach in which an auxiliary object table, consisting of the geometric definition and global attributes
of each object, is maintained in addition to the volume buffer. Each voxel consists of an index to the
object table. This allows exact calculation of normal, exact measurements, and intersection verification
for discrete ray tracing [89].The auxiliary geometric information might be useful also for re-voxelizing
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the scene in case of a change in the scene itself.

14. Special-Purpose Volume Rendering Hardware

The high computational cost of direct volume rendering makes it difficult for sequential
implementations and general-purpose computers to deliver the targeted level of performance. This
situation is aggravated by the continuing trend towards higher and higher resolution datasets. For
example, to render a dataset of 10243 16-bit voxels at 30 frames per second requires 2 GBytes of
storage, a memory transfer rate of 60 GBytes per second and approximately 300 billion instructions per
second, assuming only 10 instructions per voxel per projection.To address this challenge, researchers
have tried to achieve interactive display rates on supercomputers and massively parallel architectures
[50, 64, 67, 68, 80, 91].However, most algorithms require very little repeated computation on each
voxel and data movement actually accounts for a significant portion of the overall performance
overhead. Today’s commercial supercomputer memory systems do not have, nor will they in the near
future, adequate latency and memory bandwidth for efficiently transferring the required large amounts
of data. Furthermore, supercomputers seldom contain frame buffers and, due to their high cost, are
frequently shared by many users.

The same way as the special requirements of traditional computer graphics lead to high-performance
graphics engines, volume visualization naturally lends itself to special-purpose volume renderers that
separate real-time image generation from general-purpose processing. This allows for stand-alone
visualization environments that help scientists to interactively view their data on a single user
workstation, either augmented by a volume rendering accelerator or connected to a dedicated
visualization server. Furthermore, a volume rendering engine integrated in a graphics workstation is a
natural extension of raster based systems into 3D volume visualization.

Several researchers have proposed special-purpose volume rendering architectures [36, Chapter 6] [19,
26, 34, 48, 52, 76, 77, 88]. Most recent research has focused on accelerators for ray-casting of regular
datasets. Ray-casting offers room for algorithmic improvements while still allowing for high image
quality. Recent architectures [24] include VOGUE, VIRIM, and Cube.

VOGUE [43], a modular add-on accelerator, is estimated to achieve 2.5 frames per second for 2563

datasets. For each pixel a ray is defined by the host computer and sent to the accelerator. The VOGUE
module autonomously processes the complete ray, consisting of evenly spaced resampling locations, and
returns the final pixel color of that ray to the host. Several VOGUE modules can be combined to yield
higher performance implementations. For example, to achieve 20 projections per second of 5123

datasets requires 64 boards and a 5.2 GB per second ring-connected cubic network.

VIRIM [21] is a flexible and programmable ray-casting engine. The hardware consists of two separate
units, the first being responsible for 3D resampling of the volume using lookup tables to implement
different interpolation schemes. The second unit performs the ray-casting through the resampled dataset
according to user programmable lighting and viewing parameters. The underlying ray-casting model
allows for arbitrary parallel and perspective projections and shadows. An existing hardware
implementation for the visualization of 256× 256× 128 datasets at 10 frames per second requires 16
processing boards.

The Cube project aims at the realization of high-performance volume rendering systems for large
datasets and pioneered several hardware architectures. Cube-1, a first generation hardware prototype,
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was based on a specially interleaved memory organization [33], which has also been used in all
subsequent generations of the Cube architecture. This interleaving of then3 voxel enables conflict-free
access to any ray parallel to a main axis ofn voxels. A fully operational printed circuit board (PCB)
implementation of Cube-1 is capable of generating orthographic projections of 163 datasets from a finite
number of predetermined directions in real-time.Cube-2 was a single-chip VLSI implementation of
this prototype [3].

To achieve higher performance and to further reduce the critical memory access bottleneck, Cube-3
introduced several new concepts [55-57].A high-speed global communication network aligns and
distributes voxels from the memory to several parallel processing units and a circular cross-linked
binary tree of voxel combination units composites all samples into the final pixel color. Estimated
performance for arbitrary parallel and perspective projections is 30 frames per second for 5123 datasets.
Cube-4 [29, 58, 59] has only simple and local interconnections, thereby allowing for easy scalability of
performance. Instead of processing individual rays, Cube-4 manipulates a group of rays at a time. As a
result, the rendering pipeline is directly connected to the memory. Accumulating compositors replace
the binary compositing tree. A pixel-bus collects and aligns the pixel output from the compositors.
Cube-4 is easily scalable to very high resolution of 10243 16-bit voxels and true real-time performance
implementations of 30 frames per second.

Enhancing the Cube-4 architecture, Mitsubishi Electric has derived EM-Cube (Enhanced Memory
Cube-4). Asystem based on EM-Cube consists of a PCI card with four volume rendering chips, four
64Mbit SDRAMs to hold the volume data, and four SRAMs to capture the rendered image [53].The
primary innovation of EM-Cube is the block-skewed memory, where the volume memory is organized
in subcubes (blocks) in such a way that all the voxels of a block are stored linearly in the same DRAM
page. EM-Cubehas been further developed into a commercial product where a volume rendering chip,
called vg500, has been developed by Mitsubishi. It computes 500 million interpolated, Phong-
illuminated, composited samples per second.The vg500 is the heart of a VolumePro PC card consisting
of one vg500 and configurable standard SDRAM memory architectures.The first generation, available
in 1999, supports rendering of a rectangular data set up to 256x256x256 12-bit voxels, in real-time 30
frames/sec [60].

Simultaneously, Japan Radio Co. has enhanced Cube-4 and developed a special-purpose architecture U-
Cube. U-Cubeis specifically designed for real-time volume rendering of 3D ultrasound data.

The choice of whether one adopts a general-purpose or a special-purpose solution to volume rendering
depends upon the circumstances. If maximum flexibility is required, general-purpose appears to be the
best way to proceed. However, an important feature of graphics accelerators is that they are integrated
into a much larger environment where software can shape the form of input and output data, thereby
providing the additional flexibility that is needed. A good example is the relationship between the needs
of conventional computer graphics and special-purpose graphics hardware. Nobody would dispute the
necessity for polygon graphics acceleration despite its obvious limitations. The same argument can be
made for special-purpose volume rendering architectures.

15. Conclusions

The important concepts and computational methods of volume graphics have been presented.Although
volumetric representations and visualization techniques seem more natural for sampled or computed
data sets, their advantages are also attracting traditional geometric-based applications.This trend
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implies an expanding role for volume visualization, and it has thus the potential to revolutionize the field
of computer graphics, by providing an alternative to surface graphics, called volume graphics.We hav e
introduced recent trends in volume visualization that brought about the emergence of volume graphics.
Volume graphics has advantages over surface graphics by being viewpoint independent, insensitive to
scene and object complexity, and lending itself to the realization of block operations, CSG modeling,
and hierarchical representation.It is suitable for the representation of sampled or simulated datasets and
their intermixing with geometric objects, and it supports the visualization of internal structures.The
problems associated with the volume buffer representation, such as memory size, processing time,
aliasing, and lack of geometric representation, echo problems encountered when raster graphics
emerged as an alternative technology to vector graphics and can be alleviated in similar ways.

The progress so far in volume graphics, in computer hardware, and memory systems, coupled with the
desire to reveal the inner structures of volumetric objects, suggests that volume visualization and
volume graphics may develop into major trends in computer graphics.Just as raster graphics in the
seventies superseded vector graphics for visualizing surfaces, volume graphics has the potential to
supersede surface graphics for handling and visualizing volumes as well as for modeling and rendering
synthetic scenes composed of surfaces.
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