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L – group 

D – documents 

N – words per document 

 

Goal: find MLE on B and π  

That is find the most likely distribution of words Bl for each of the L classes and the most 

likely distribution π of documents among classes, given the N words in each of the D 

documents. 
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Explanation of above equation: 

First the above equation seeks to calculate 

Max P(documents) 

Therefore it computes  
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Here we marginalize out B and π so that we may actually calculate the probability 

of a document. 
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is the probability of the class times the probability of all the words given the class. 

Therefore we have marginalized with respect to B and π.  That is we have summed the 

probability out for each class in the distribution π and for each vocabulary B associated 

with that class. 
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Because these probabilities are tiny we take the log.  We do this for all documents 

1 to D.  Giving us. 
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Which is just the log likelihood of seeing all the documents for a given π and B. 

 

L–means: 

1. partition the data according to current means 

2. re-estimate the means 

 

If we knew the classes, 
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 sum word counts in lth cluster / words in lth cluster 

 

Summing w vectors to get word counts 
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That is the solution to the MLE, given the classes, is to just calculate the straightforward 

arithmetic estimates.  Because, as was shown in the first homework, these arithmetic 

estimates yield the maximum likelihood for the observed data. 

 

 

EM Algorithm: 

Iterate to obtain: )(
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E[ ] is a vector of probabilities that d is in each cluster 
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We are now weighting documents in classes rather than considering them fixed in one 

class.  That is rather than considering a document to be either in class i or j the way L-

means (also k-means although in this lecture it was called L-means for consistency with 

the above equation’s notation), it can be considered to be in class i with probability x and 

j with probability y.  Therefore each document is associated with a vector E[] that 

contains the probabilities that it belongs in each cluster. 

 

E-step: 
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M-step: 

Compute a weighted MLE 
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Or written out more fully 

M-step 
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EM is finding a fixed point of the expected complete log likelihood 
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In plain English, EM is computing the posterior probability vectors E[] and then 

computing the maximum log likelihood of expectation given these vectors.  That is E 

estimates the posterior probabilities E[] and M computes the new means (or in our 

example the most probable distributions π and B) given E[].  At which point, E 

recomputes new probabilities E
(t+1)

[] based on the new means (values of π and B in our 

case), etc., etc. 

 

 

 

 

 

 



 

 

If Data are Gaussian 
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Gaussian Mixture Model 

 
 

 

EM is a way of fitting parameters in latent variable models 

 

E-step – values of latent variables are “filled in” (expectation) 

M-step – parameters are fit to match filled in variables (maximization) 


