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Lecturer: Dave Blei Lecture #11
Scribe: Andrew Ferguson March 13, 2007

1 Graphical Models Wrap-up

We began the lecture with some final words on graphical models. Choosing a graphical
model is akin to choosing a probability model for your data or choosing an algorithm. Each
model has advantages and disadvantages that may make it more or less suitable for modeling
your data. A graphical model is a representation of a probability model, so it also carries
that model’s plusses and minuses.

Graphical models also come with assumptions about (in)dependency, which you should
be careful of since they might not hold for your data. Use the Bayes’ Ball algorithm to
reveal these dependencies. Independencies in a graphical model do not have to be explicit,
either. For example, in this model:
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the nodes labeled “A” and “B” are not required to be dependent.

2 Text Classification

Today, we examined the problem of classifying text documents (such as e-mail messages)
into some number of classes.

First off, we introduced the multinomial model to probabilistically describe the text
documents. Each document is described by a vector w which is formed from a sequence
of words wn, where wn is the nth word in w. Each word wn is taken from a vocabulary
of length V , that is, wn ε {1, . . . , V }. You should think of wn as a vector of length V
with zeroes everywhere, except for a one in the position of the word it represents – wn is a
multivariate indicator random variable.

We then introduced β, a distribution over the vocabulary. β has the following properties:

• β is a vector of length V

• βi is the probability of the ith word in the vocabulary occurring

• βi > 0 ∀ i ε {1, . . . , v}

•
∑V

v=1 βv = 1

• The space of all possible β’s is called the simplex



The words are drawn from β, as described by the following relationship:

P(wn|β) =
V∏

v=1

βwv
n

v = βwn

where wv
n is the vth component of the vector wn and βwn is the component of β associated

with the word wn.
The standing assumption in this model is that each word in the data set is drawn from

the same distribution. We can show this with the following graphical model of a collection
of documents:
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which can be represented more concisely using the plate notation, where there are D doc-
uments of length N :
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Finally, we derive the maximum likelihood estimator for β. First, we describe our length
D data set in terms of β:

P(w1, . . . ,wD|β) =
D∏

d=1

N∏
n=1

P(wd,n|β)︸ ︷︷ ︸
=

D∏
d=1

N∏
n=1

︷ ︸︸ ︷
V∏

v=1

β
wv

d,n
v

where wd,n is the nth word in the dth document of the data set. This relationship answers
the question “What is the probability of a data set given β?”. Then, we maximize the
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logarithm of the probability to obtain the MLE in the usual manner.

L (β,D) =
D∑

d=1

N∑
n=1

V∑
v=1

wv
d,n log βv (1)

=
V∑

v=1

log βv

D∑
d=1

N∑
n=1

wv
d,n︸ ︷︷ ︸

kv

=
V∑

v=1

kv log βv (2)

where kv counts the number of times word v appears in the whole collection of documents.
kv is a sufficient statistic for our distribution – it contains all that we need to know to
compute the log-likelihood. Notice in equation (1) that βv does not depend on D or N .
From equation (2) we find that the maximum likelihood estimator for β is:

β̂v =
kv

N · D

where N · D is the total number of words that we saw in the data set. For example, if the
word “mortgage” appeared 15 times in our data set, which consisted of 300 words, then
β̂mortgage = 15

300 = 1
20 .

3 The Naive Bayes Model

The Naive Bayes Model for text classification can be described with the following graphical
model:
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where C represents the classes, π is some distribution over the classes (e.g., 70% spam, 30%
ham), L is the number of classes, and for each class l we have a corresponding distribution
βl over the words. From the left-hand side of the diagram, we see that each document
belongs to a class.

This graphical model encodes a generative process. It is a description of where the doc-
ument came from; how it was created. In the model, some emails are randomly generated as
“spam” or “ham”, the two classes of emails. The graphical model doesn’t tell us everything,
however. We need to know that the β distribution used depends on the class chosen.

Using our model, we want to classify a randomly generated document. We are given the
parameters π, β, and the document itself, wd. This classification is given by the posterior
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distribution over classes:

P(c|wd, π, β) =
P(c,wd|π,β)
P(wd|π,β)

(3)

=
P(c|π)

∏N
n=1 P(wd,n|c,β)

P(wd|π,β)

=
πc
∏N

n=1 βc,wd,n

P(wd|π,β)
(4)

where in equation (3) we factor the numerator using the graphical model. The procedure
classifies the document as from whichever class maximizes this posterior distribution. Math-
ematically, this is written as arg maxc P(c|wd, π, βc), where βc is the probability distribution
β for class c. For implementation, it is important to note that the denominator in equation
(4) is the same across classes, and therefore one does not have to compute it to maximize
the overall fraction. This procedure of maximizing the posterior distribution is known as
inference.

But where do the distributions π and β1:L come from? We estimate them from training
data using the maximum likelihood estimators. The training data consists of a set of D
documents labeled with their classes, which we will write as D = {wd, cd}D

d=1, where cd is a
multinomial indicator variable, with a one in the position representing the class of document
d and zeroes in the other positions. To compute the MLEs, we factor the joint distribution
according to the graphical model, and follow the procedure used above.

P(D |π,β) =
D∏

d=1

P(cd|π)
N∏

n=1

P(wd,n|βcd
)

=
D∏

d=1

L∏
l=1

π
cl
d

l

L∏
l=1

(
N∏

n=1

V∏
v=1

β
wv

d,n

l,v

)cl
d

︸ ︷︷ ︸
prob. of document given class l

L (π,β;D) =
D∑

d=1

L∑
l=1

cl
d log πl +

D∑
d=1

L∑
l=1

cl
d

(
N∑

n=1

V∑
v=1

wv
d,n log βl,v

)

Notice that raising to the power cl
d serves to select only the class the document d is actually

assigned to, since x0 = 1 and x1 = x.
The function L (π,β;D) is what we wish to maximize with respect to π and β to

obtain the maximum likelihood estimators. We note that only the first half of the sum
above depends on π,

∑D
d=1

∑L
l=1 cl

d log πl. We have encountered this sort of expression
when using indicator random variables many times before, that is, π̂spam = # of spam emails

total # of emails .
In general we have,

π̂l =
# of documents of class l

total # of documents

Similarly, since βl is a multinomial model only of class l, we can conclude that

β̂l,v =
# of times we see word v in documents of class l

total # of words in documents of class l
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4 Naive Bayes Classification in Practice

An example of the Naive Bayes Model in practice was presented. Ten-thousand emails
taken from the Enron subpoena documents were used to train the classifier to distinguish
between spam and ham. The classifier was then explored using a testing set of 1,000 emails.
The performance results of this simple classifier we remarkable and it was quite successful.
Several important lessons about the Naive Bayes Model can be drawn from it.

The first lesson is that non-trivial words, that is, words that are present almost exclu-
sively in one class or another, will have the greatest effect on classification. In this example,
if we look at a quantity proportional to the log probability of a message being spam:

log P(spam|π) + log P(w1|βspam) + · · · + log P(wN |βspam)

and the same quantity of the same message being ham:

log P(ham|π) + log P(w1|βham) + · · · + log P(wN |βham)

Then any words where the difference log P(wi|βspam) − log P(wi|βham) is relatively large
will provide a strong indication that the document is spam or ham.

Secondly, we encountered several problems or short-comings of the Naive Bayes Model.
In this model, words are treated independently of each other, while in reality, the choice of
words is almost certainly dependent on the previous words. An even more serious problem
is that words only seen in spam messages or ham messages are not handled very well. Such
words can cause a zero to appear in one of the terms of a product such as P(spam|wd),
which drives the whole product to zero. The solution to this problem is called smoothing.

In smoothing, we add a small number, α, to each estimate of β̂l,v. That is,

β̂l,v =
# of times we see word v in documents of class l + α

total # of words in documents of class l + V · α

This prevents any of the maximum likelihood estimators from being zero, even if a word is
unique to a particular class. The choice of α is up to the implementor, and changing the
value generally affects the testing error of the classifier. Setting α = 1 is known as Laplace
Smoothing; α = 0.5 is using Jeffrey’s Prior. On the Enron test set, smoothing radically
improved the performance of the Naive Bayes classifier to well over 90%. Finally, we note
that on the test set, we generally ignore words that were not seen in the training set.

5 Extensions to the Naive Bayes Model

If we go back to the posterior distribution over classes given in equation (4), we see that it
consists of two principal components: πc, the probability of class c and

∏N
n=1 βc,wd,n

, which is
the probability of the words under the model. Here, we could substitute an alternate model,
which we will generically describe as P(X|c). For example, we can use a Gaussian model:
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where µl and σ2
l are the standard Gaussian MLE’s. This is also known as Linear Discrimi-

nate Analysis. Another option is to work with a sequence of words, such as in this model:
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where Φ is the distribution over words conditioned on the previous word.
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