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Abstract

Boosting is a general method for improving the accuracy gf giaen
learning algorithm. Focusing primarily on the AdaBoostaalthm, this
chapter overviews some of the recent work on boosting inictudnalyses
of AdaBoost’s training error and generalization error; §tir@y’s connection
to game theory and linear programming; the relationshipveeh boosting
and logistic regression; extensions of AdaBoost for mialis classification
problems; methods of incorporating human knowledge intosbng; and
experimental and applied work using boosting.

1 Introduction

Machine learning studies automatic techniques for legrtinrmake accurate pre-
dictions based on past observations. For example, suppasaé would like to

build an email filter that can distinguish spam (junk) emedhfi non-spam. The
machine-learning approach to this problem would be thedofig: Start by gath-

ering as many examples as posible of both spam and non-spaits.eNext, feed

these examples, together with labels indicating if they sgr@m or not, to your
favorite machine-learning algorithm which will automatiiy produce a classifi-
cation or prediction rule. Given a new, unlabeled emailhsaaule attempts to
predict if it is spam or not. The goal, of course, is to gereeatule that makes the
most accurate predictions possible on new test examples.



Building a highly accurate prediction rule is certainly &idult task. On the
other hand, it is not hard at all to come up with very rough sudé thumb that
are only moderately accurate. An example of such a rule ise#ing like the
following: “If the phrase ‘buy now’ occurs in the email, th@nedict it is spam.”
Such a rule will not even come close to covering all spam ngessdor instance,
it really says nothing about what to predict if ‘buy now’ doest occur in the
message. On the other hand, this rule will make predictibasdre significantly
better than random guessing.

Boosting, the machine-learning method that is the subjethis chapter, is
based on the observation that finding many rough rules ofthtan be a lot easier
than finding a single, highly accurate prediction rule. Tplgaghe boosting ap-
proach, we start with a method or algorithm for finding thegiouules of thumb.
The boosting algorithm calls this “weak” or “base” learnialgorithm repeatedly,
each time feeding it a different subset of the training exasfor, to be more pre-
cise, a different distribution or weighting over the traigiexample¥. Each time
it is called, the base learning algorithm generates a nevk wesdiction rule, and
after many rounds, the boosting algorithm must combineethesak rules into a
single prediction rule that, hopefully, will be much morea@ate than any one of
the weak rules.

To make this approach work, there are two fundamental auressthat must be
answered: first, how should each distribution be chosen dmmand, and second,
how should the weak rules be combined into a single rule? ewathe choice
of distribution, the technique that we advocate is to pldeerost weight on the
examples most often misclassified by the preceding weak;rtliess has the effect
of forcing the base learner to focus its attention on the dbst” examples. As
for combining the weak rules, simply taking a (weighted) oniéy vote of their
predictions is natural and effective.

There is also the question of what to use for the base leaalgayithm, but
this question we purposely leave unanswered so that we ndlLg with a general
boosting procedure that can be combined with any base tepatgorithm.

Boostingrefers to a general and provably effective method of pradyeivery
accurate prediction rule by combining rough and moderatedgcurate rules of
thumb in a manner similar to that suggested above. This ehagpesents an
overview of some of the recent work on boosting, focusingeesly on the Ada-
Boost algorithm which has undergone intense theoreticdlysand empirical test-

ing.

LA distribution over training examples can be used to gereaatubset of the training examples
simply by sampling repeatedly from the distribution.




Given: (z1,91),---, (Tm,ym) Wherez; € X, y; € Y = {-1,+1}
Initialize D4 (7) = 1/m.

Fort=1,...,T:
e Train base learner using distributidpy.
e Get base classifidr; : X — R.
e Choosax; € R.
e Update:
Dy (i —ouyih(z;
t
where Z, is a normalization factor (chosen so thag,; will be a distribu-
tion).

Output the final classifier:

T
H(z) = sign (Z atht(w)> .

t=1

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant's PAC (probably approximately corretgarning model [75],
Kearns and Valiant [41, 42] were the first to pose the questiavhether a “weak”
learning algorithm that performs just slightly better thandom guessing can be
“boosted” into an arbitrarily accurate “strong” learninig@ithm. Schapire [66]
came up with the first provable polynomial-time boostingoaillpm in 1989. A
year later, Freund [26] developed a much more efficient lnmagpsigorithm which,
although optimal in a certain sense, nevertheless suffise@&chapire’s algorithm
from certain practical drawbacks. The first experimenthiiese early boosting
algorithms were carried out by Drucker, Schapire and Sirf2Hon an OCR task.
The AdaBoost algorithm, introduced in 1995 by Freund andaBich [32],
solved many of the practical difficulties of the earlier kg algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is givengnlFn the slightly
generalized form given by Schapire and Singer [70]. Therdlguo takes as input
a training set(z1,91),-- -, (zm,ym) Where eachr; belongs to somelomainor
instance spac&’, and eacHabely; is in some label sét”. For most of this paper,
we assumé& = {—1,+1}; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a givereakor base learning algorithmepeatedly in a series



of roundst = 1,...,T. One of the main ideas of the algorithm is to maintain a
distribution or set of weights over the training set. Theghebf this distribution on
training example on roundt is denotedD, (7). Initially, all weights are set equally,
but on each round, the weights of incorrectly classified elamare increased so
that the base learner is forced to focus on the hard exanmmptée itraining set.

The base learner’s job is to findlmse classifieth; : X — R appropriate
for the distributionD,. (Base classifiers were also called rules of thumb or weak
prediction rules in Section 1.) In the simplest case, thgeast eachh, is binary,
i.e., restricted td —1, +1}; the base learner’s job then is to minimize dreor

€t = Priop, [he(zi) # yil -

Once the base classifieg has been received, AdaBoost chooses a parameter
a; € R that intuitively measures the importance that it assigris tdn the figure,
we have deliberately left the choice @f unspecified. For binarj;, we typically

set .
—€
= %ln< o t> D)

as in the original description of AdaBoost given by Freund Sohapire [32]. More
on choosingy; follows in Section 3. The distributio®; is then updated using the
rule shown in the figure. Thiinal or combined classifieH is a weighted majority
vote of theT" base classifiers wherg is the weight assigned ta.

3 Analyzing the training error

The most basic theoretical property of AdaBoost concemsliility to reduce
the training error, i.e., the fraction of mistakes on thenirey set. Specifically,
Schapire and Singer [70], in generalizing a theorem of Fteamd Schapire [32],
show that the training error of the final classifier is boundsdollows:

%I{i: H(z) # yi}| < ZeXP —yif (%)) HZt )

where henceforth we define

z) =Y ahy(z) 3)
"

so thatH (z) = sign(f(z)). (For simplicity of notation, we writ§_, and>_, as
shorthand foy_;" andthzl, respectively.) The inequality follows from the fact
thate ¥if(@) > 1if y; £ H (z;). The equality can be proved straightforwardly by
unraveling the recursive definition &f,.



Eg. (2) suggests that the training error can be reduced mpslly (in a greedy
way) by choosingy; andh; on each round to minimize

ZDt i) exp(—auyihe(zi)). (4)

In the case of binary classifiers, this leads to the choia; gfiven in Eqg. (1) and
gives a bound on the training error of

E[Zt - H[Q\/Tet] H,/1—47t < exp (—2;%) (5)

t

where we definey, = 1/2 — ¢. This bound was first proved by Freund and
Schapire [32]. Thus, if each base classifier is slightlydratian random so that
v; >« for somey > 0, then the training error drops exponentially fasfirsince
the bound in Eq. (5) is at most2”7*. This bound, combined with the bounds
on generalization error given below prove that AdaBooshdeed a boosting al-
gorithm in the sense that it can efficiently convert a trueknlearning algorithm
(that can always generate a classifier with a weak edge fodiitrybution) into
a strong learning algorithm (that can generate a classifiir an arbitrarily low
error rate, given sufficient data).

Eg. (2) points to the fact that, at heart, AdaBoost is a proadbr finding a
linear combinationf of base classifiers which attempts to minimize

>_exp(—yif (zi)) = Zexp( yzzatht zi ) (6)

i %

Essentially, on each round, AdaBoost chodsefoy calling the base learner) and
then setsy; to add one more term to the accumulating weighted sum of bassic
fiers in such a way that the sum of exponentials above will beimmelly reduced.
In other words, AdaBoost is doing a kind of steepest desaantch to minimize
Eq. (6) where the search is constrained at each step to fatmwdinate direc-
tions (where we identify coordinates with the weights assifjto base classifiers).
This view of boosting and its generalization are examinedonsiderable detail
by Duffy and Helmbold [23], Mason et al. [51, 52] and Friednjd@8]. See also
Section 6.

Schapire and Singer [70] discuss the choicexptind h; in the case thah,
is real-valued (rather than binary). In this cagg(z) can be interpreted as a
“confidence-rated prediction” in which the sign bf(z) is the predicted label,
while the magnitudeh,(z)| gives a measure of confidence. Here, Schapire and
Singer advocate choosing andh; so as to minimizeéZ; (Eq. (4)) on each round.



4 Generalization error

In studying and designing learning algorithms, we are ofseinterested in per-
formance on example®t seen during training, i.e., in the generalization errag, th
topic of this section. Unlike Section 3 where the trainingmples were arbitrary,
here we assume that all examples (both train and test) aerajed i.i.d. from
some unknown distribution oX x Y. The generalization error is the probability
of misclassifying a new example, while the test error is thetfon of mistakes on
a newly sampled test set (thus, generalization error isaagdest error). Also,
for simplicity, we restrict our attention to binary basesd#iers.

Freund and Schapire [32] showed how to bound the geneializatror of the
final classifier in terms of its training error, the size of the sample, the VC-
dimensior d of the base classifier space and the number of rofihasboosting.
Specifically, they used techniques from Baum and Hauss]aio[Show that the
generalization error, with high probability, is at mbst

Pr[H(z) ﬂ]m( %)

wherePr [-] denotes empirical probability on the training sample. Huand sug-
gests that boosting will overfit if run for too many rounds, jasT” becomes large.
In fact, this sometimes does happen. However, in early @xpais, several au-
thors [8, 21, 59] observed empirically that boosting oftemshot overfit, even
when run for thousands of rounds. Moreover, it was obsevaidddaBoost would
sometimes continue to drive down the generalization emog lafter the training
error had reached zero, clearly contradicting the spirithef bound above. For
instance, the left side of Fig. 2 shows the training and tastes of running boost-
ing on top of Quinlan’s C4.5 decision-tree learning aldorit[60] on the “letter”
dataset.

In response to these empirical findings, Schapire et al, {6Bdwing the work
of Bartlett [3], gave an alternative analysis in terms of th&rginsof the training
examples. The margin of example, y) is defined to be

yf(z)

y > ophy(z)
. t
margin(z,y) = =
Dl Y el
t t
2The Vapnik-Chervonenkis (VC) dimension is a standard measithe “complexity” of a space
of binary functions. See, for instance, refs. [6, 76] fordg&dinition and relation to learning theory.

3The “soft-Oh” notationO (-), here used rather informally, is meant to hide all logarithend
constant factors (in the same way that standard “big-Ohétian hides only constant factors).
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Figure 2. Error curves and the margin distribution graphtoosting C4.5 on
the letter dataset as reported by Schapire et al. [&@ft the training and test
error curves (lower and upper curves, respectively) of trakined classifier as
a function of the number of rounds of boosting. The horizblinas indicate the
test error rate of the base classifier as well as the test efithie final combined
classifier. Right The cumulative distribution of margins of the training exaes

after 5, 100 and 1000 iterations, indicated by short-dastwed)-dashed (mostly
hidden) and solid curves, respectively.

It is a number if—1,+1] and is positive if and only iff correctly classifies the
example. Moreover, as before, the magnitude of the margirbeanterpreted as a
measure of confidence in the prediction. Schapire et al.gortivat larger margins
on the training set translate into a superior upper bounti@géneralization error.
Specifically, the generalization error is at most

Pr [marginf(:v,y) < 9] +0 ( %)
V m

for anyd > 0 with high probability. Note that this bound is entirely inendent
of T', the number of rounds of boosting. In addition, Schapirel.epeoved that
boosting is particularly aggressive at reducing the mafigia quantifiable sense)
since it concentrates on the examples with the smallestinsafgyhether positive
or negative). Boosting’s effect on the margins can be segirgally, for instance,
on the right side of Fig. 2 which shows the cumulative distiitm of margins of the
training examples on the “letter” dataset. In this casenaifeer the training error
reaches zero, boosting continues to increase the margihe &faining examples
effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explamatibthe effectiveness
of boosting, quantitatively, the bounds are rather wealirBan [9], for instance,
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shows empirically that one classifier can have a marginibligton that is uni-

formly better than that of another classifier, and yet beriofén test accuracy. On
the other hand, Koltchinskii, Panchenko and Lozano [4446558] have recently
proved new margin-theoretic bounds that are tight enougjivtouseful quantita-
tive predictions.

Attempts (not always successful) to use the insights gkkdren the theory
of margins have been made by several authors [9, 37, 50].diti@u the margin
theory points to a strong connection between boosting amgupport-vector ma-
chines of Vapnik and others [7, 14, 77] which explicitly attgt to maximize the
minimum margin.

5 A connection to game theory and linear programming

The behavior of AdaBoost can also be understood in a ganuedtie setting as
explored by Freund and Schapire [31, 33] (see also Grove ahduBmans [37]
and Breiman [9]). In classical game theory, it is possibl@ub any two-person,
zero-sum game in the form of a matiM. To play the game, one player chooses a
row ¢ and the other player chooses a coluprThe loss to the row player (which
is the same as the payoff to the column playeiMsg;. More generally, the two
sides may play randomly, choosing distributiddsand Q over rows or columns,
respectively. The expected loss thePIEMQ.

Boosting can be viewed as repeated play of a particular gaatexnAssume
that the base classifiers are binary, andHet= {hi,..., h,, } be the entire base
classifier space (which we assume for now to be finite). Forealfiraining set

(1,91)5- -+ (Tm, Ym), the game matriM hasm rows andn columns where
. 1 if hj (:L‘Z) =Y;
M;; = { 0 otherwise.

The row player now is the boosting algorithm, and the coludayer is the base
learner. The boosting algorithm’s choice of a distributiBpover training exam-
ples becomes a distributid? over rows ofM, while the base learner’s choice of a
base classifiet; becomes the choice of a colunjrof M.

As an example of the connection between boosting and garogyfteonsider
von Neumann'’s famous minmax theorem which states that

max min PTMQ = min max PTMQ
Q P P Q

for any matrixM. When applied to the matrix just defined and reinterpreted in
the boosting setting, this can be shown to have the followiegning: If, for any
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distribution over examples, there exists a base classiftarasror at most /2 — -,
then there exists a convex combination of base classifiglsaninargin of at least
2+ on all training examples. AdaBoost seeks to find such a firsdsdier with
high margin on all examples by combining many base classjfserin a sense, the
minmax theorem tells us that AdaBoost at least has the paként success since,
given a “good” base learner, there must exist a good combmalf base classi-
fiers. Going much further, AdaBoost can be shown to be a dpeasa of a more
general algorithm for playing repeated games, or for agprately solving matrix
games. This shows that, asymptotically, the distributieerdraining examples as
well as the weights over base classifiers in the final clas$iige game-theoretic
intepretations as approximate minmax or maxmin strategies

The problem of solving (finding optimal strategies for) aaczeum game is
well known to be solvable using linear programming. Thuss, thrmulation of the
boosting problem as a game also connects boosting to liaesdrmore generally
convex, programming. This connection has led to new algmstand insights as
explored by Ratsch et al. [62], Grove and Schuurmans [3d]Remiriz, Bennett
and Shawe-Taylor [17].

In another direction, Schapire [68] describes and anal{zegieneralization
of both AdaBoost and Freund’s earlier “boost-by-majorigigorithm [26] to a
broader family of repeated games called “drifting games.”

6 Boosting and logistic regression

Classification generally is the problem of predicting thigelay of an exampler
with the intention of minimizing the probability of an ingect prediction. How-
ever, it is often useful to estimate tipgobability of a particular label. Friedman,
Hastie and Tibshirani [34] suggested a method for using tiyeud of AdaBoost to
make reasonable estimates of such probabilities. Spdkifitey suggested using
a logistic function, and estimating

Prf[y:+1|x]:ef( (7)

D eI @)

where, as usual;(z) is the weighted average of base classifiers produced by Ada-
Boost (Eg. (3)). The rationale for this choice is the closenaxtion between the
log loss (negative log likelihood) of such a model, namely,

> (14 e~ @) )



and the function that, we have already noted, AdaBoost ateto minimize:

Z e Vif(xi) (9)
Specifically, it can be verified that Eq. (8) is upper boundg&d. (9). In addition,
if we add the constarit — In 2 to Eq. (8) (which does not affect its minimization),
then it can be verified that the resulting function and theiarteg. (9) have iden-
tical Taylor expansions around zero up to second order;, theg behavior near
zero is very similar. Finally, it can be shown that, for angtdbution over pairs
(z,y), the expectations

E [ln <1 + e_ny(I))]

and
E [e—yf(ﬂ:)]
are minimized by the same (unconstrained) funciipnamely,
Priy=+1| :c])
=1 S A S B
fle) = 2ln(Pr[y:—l |z]) "

Thus, for all these reasons, minimizing Eq. (9), as is donddgBoost, can be
viewed as a method of approximately minimizing the negdtgdikelihood given

in Eq. (8). Therefore, we may expect Eq. (7) to give a readenpimbability

estimate.

Of course, as Friedman, Hastie and Tibshirani point ouberathan minimiz-
ing the exponential loss in Eq. (6), we could attempt insteadirectly minimize
the logistic loss in Eq. (8). To this end, they propose theigitBoost algorithm.
A different, more direct modification of AdaBoost for lodistoss was proposed
by Collins, Schapire and Singer [13]. Following up on workKiyinen and War-
muth [43] and Lafferty [47], they derive this algorithm ugia unification of logis-
tic regression and boosting based on Bregman distances. wiik further con-
nects boosting to the maximum-entropy literature, paldity the iterative-scaling
family of algorithms [15, 16]. They also give unified prooft amnvergence to
optimality for a family of new and old algorithms, includingdaBoost, for both
the exponential loss used by AdaBoost and the logistic Igssl Gior logistic re-
gression. See also the later work of Lebanon and Lafferty & showed that
logistic regression and boosting are in fact solving theesaamstrained optimiza-
tion problem, except that in boosting, certain normal@atonstraints have been
dropped.

For logistic regression, we attempt to minimize the lossfiom

Z In (1 + e—yif(mi)) (10)
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which is the same as in Eq. (8) except for an inconsequertiemhge of constants
in the exponent. The modification of AdaBoost proposed byi@glSchapire and
Singer to handle this loss function is particularly simpte AdaBoost, unraveling
the definition ofD; given in Fig. 1 shows thab,(7) is proportional (i.e., equal up
to normalization) to

exp (—y; fi—1())
where we define

t
fi(z) =) aphy(z).
t'=1
To minimize the loss function in Eq. (10), the only necessandification is to
redefineD;(z) to be proportional to

1
1+ exp (yifi—1(zi))

A very similar algorithm is described by Duffy and HelmboRB]. Note that in
each case, the weight on the examples, viewed as a vectapgerponal to the
negative gradient of the respective loss function. Thiseisaise both algorithms
are doing a kind of functional gradient descent, an observahat is spelled out
and exploited by Breiman [9], Duffy and Helmbold [23], Masetral. [51, 52] and
Friedman [35].

Besides logistic regression, there have been a number obagpes taken to
apply boosting to more general regression problems in wihietlabelsy; are real
numbers and the goal is to produce real-valued predicttmtsate close to these la-
bels. Some of these, such as those of Ridgeway [63] and Feeuh8chapire [32],
attempt to reduce the regression problem to a classificatiolbblem. Others, such
as those of Friedman [35] and Duffy and Helmbold [24] use timefional gradient
descent view of boosting to derive algorithms that direatiynimize a loss func-
tion appropriate for regression. Another boosting-basgor@ach to regression
was proposed by Drucker [20].

7 Multiclass classification

There are several methods of extending AdaBoost to thectads case. The most
straightforward generalization [32], called AdaBoost,M4 adequate when the
base learner is strong enough to achieve reasonably highaayc even on the
hard distributions created by AdaBoost. However, this metfails if the base
learner cannot achieve at least 50% accuracy when run oa ffeed distributions.
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For the latter case, several more sophisticated methodsliean developed.
These generally work by reducing the multiclass problem leyger binary prob-
lem. Schapire and Singer’s [70] algorithm AdaBoost.MH v&bly creating a set
of binary problems, for each exampleand each possible labgl| of the form:
“For examplez, is the correct label or is it one of the other labels?” Freund
and Schapire’s [32] algorithm AdaBoost.M2 (which is a spkecase of Schapire
and Singer’s [70] AdaBoost.MR algorithm) instead createsty problems, for
each example with correct labely and eachncorrectlabely’ of the form: “For
examplez, is the correct labej or 3'?”

These methods require additional effort in the design obtse learning algo-
rithm. A different technique [67], which incorporates Dartch and Bakiri’s [19]
method of error-correcting output codes, achieves sirpilavable bounds to those
of AdaBoost.MH and AdaBoost.M2, but can be used with any teamer that
can handle simple, binary labeled data. Schapire and S[iA@¢rand Allwein,
Schapire and Singer [2] give yet another method of combihi@sting with error-
correcting output codes.

8 Incorporating human knowledge

Boosting, like many machine-learning methods, is entidgia-driven in the sense
that the classifier it generates is derived exclusively ftbeevidence present in
the training data itself. When data is abundant, this ambroaakes sense. How-
ever, in some applications, data may be severely limitetthare may be human
knowledge that, in principle, might compensate for the latc#ata.

In its standard form, boosting does not allow for the diracbrporation of such
prior knowledge. Nevertheless, Rochery et al. [64, 65] desa modification of
boosting that combines and balances human expertise védttable training data.
The aim of the approach is to allow the human’s rough judgmémbe refined,
reinforced and adjusted by the statistics of the training,daut in a manner that
does not permit the data to entirely overwhelm human judgsnen

The first step in this approach is for a human expert to cocistby hand a
rule p mapping each instance to an estimated probability(z) € [0, 1] that is
interpreted as the guessed probability that instaneéll appear with labeH-1.
There are various methods for constructing such a fungtj@md the hope is that
this difficult-to-build function need not be highly accwdbr the approach to be
effective.

Rochery et al.'s basic idea is to replace the logistic los&tion in Eqg. (10)

12



with one that incorporates prior knowledge, namely,
1
—yif(zi) .
S (14wl 13 RE (p(xz) o= f(m)

whereRE (p || ¢) = pIn(p/q) + (1 — p)In((1 — p)/(1 — ¢)) is binary relative
entropy. The first term is the same as that in Eq. (10). Thenskterm gives a
measure of the distance from the model built by boosting ¢ohtlman’s model.
Thus, we balance the conditional likelihood of the data regjahe distance from
our model to the human’s model. The relative importance efttho terms is
controlled by the parametet

9 Experiments and applications

Practically, AdaBoost has many advantages. It is fast, Isirapd easy to pro-
gram. It has no parameters to tune (except for the numbenofr®d). It requires
no prior knowledge about the base learner and so can be flecdiphbined with
any method for finding base classifiers. Finally, it comes witletad$ theoretical
guarantees given sufficient data and a base learner thatkally provide only
moderately accurate base classifiers. This is a shift in regtdor the learning-
system designer: instead of trying to design a learningrdlgo that is accurate
over the entire space, we can instead focus on finding basgrgalgorithms that
only need to be better than random.

On the other hand, some caveats are certainly in order. Thalgerformance
of boosting on a particular problem is clearly dependenthendata and the base
learner. Consistent with theory, boosting can fail to penfevell given insufficient
data, overly complex base classifiers or base classifigratb#oo weak. Boosting
seems to be especially susceptible to noise [18] (more snrtf8ectionsec:exps).

AdaBoost has been tested empirically by many researcheisiding [4, 18,
21, 40, 49, 59, 73]. For instance, Freund and Schapire [308deAdaBoost on a
set of UCI benchmark datasets [54] using C4.5 [60] as a baseiteg algorithm,
as well as an algorithm that finds the best “decision stumimgle-test decision
tree. Some of the results of these experiments are showgir3FAs can be seen
from this figure, even boosting the weak decision stumps saally give as good
results as C4.5, while boosting C4.5 generally gives thésoectree algorithm a
significant improvement in performance.

In another set of experiments, Schapire and Singer [71] beesting for text
categorization tasks. For this work, base classifiers weee that test on the pres-
ence or absence of a word or phrase. Some results of thesinespes comparing
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Figure 3: Comparison of C4.5 versus boosting stumps andibgoS4.5 on a set
of 27 benchmark problems as reported by Freund and Scha&fife Each point
in each scatterplot shows the test error rate of the two ctngpalgorithms on
a single benchmark. Thgcoordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, andadbeordinate gives the error rate
of boosting stumps (left plot) or boosting C4.5 (right plo#ll error rates have
been averaged over multiple runs.

AdaBoost to four other methods are shown in Fig. 4. In nedtlpfahese ex-
periments and for all of the performance measures testexhtibg performed as
well or significantly better than the other methods testesisihown in Fig. 5, these
experiments also demonstrated the effectiveness of usimfidence-rated predic-
tions [70], mentioned in Section 3 as a means of speeding osting.

Boosting has also been applied to text filtering [72] andingu39], “ranking”
problems [28], learning problems arising in natural largguprocessing [1, 12, 25,
38, 55, 78], image retrieval [74], medical diagnosis [53|d @ustomer monitoring
and segmentation [56, 57].

Rochery et al.’s [64, 65] method of incorporating human kiealge into boost-
ing, described in Section 8, was applied to two speech capagion tasks. In this
case, the prior knowledge took the form of a set of hand-lbuiés mapping key-
words to predicted categories. The results are shown ir6kig.

The final classifier produced by AdaBoost when used, for mtgtawith a
decision-tree base learning algorithm, can be extrematyptex and difficult to
comprehend. With greater care, a more human-understanéiabl classifier can
be obtained using boosting. Cohen and Singer [11] showedtb@asign a base
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Figure 4. Comparison of error rates for AdaBoost and foueotbxt categoriza-
tion methods (naive Bayes, probabilistic TF-IDF, Rocchiml &leeping experts)
as reported by Schapire and Singer [71]. The algorithms vested on two text
corpora — Reuters newswire articles (left) and AP newswaadfines (right) —
and with varying numbers of class labels as indicated om:thgis of each figure.

learning algorithm that, when combined with AdaBoost, ltssa a final classifier
consisting of a relatively small set of rules similar to thagenerated by systems
like RIPPER [10], IREP [36] and C4.5rules [60]. Cohen andg8its system,
called SLIPPER, is fast, accurate and produces quite canplacsets. In other
work, Freund and Mason [29] showed how to apply boostingdmla generaliza-
tion of decision trees called “alternating trees.” Thegalthm produces a single
alternating tree rather than an ensemble of trees as woubthtaened by running
AdaBoost on top of a decision-tree learning algorithm. Qs dther hand, their
learning algorithm achieves error rates comparable tcetlwbs® whole ensemble
of trees.

A nice property of AdaBoost is its ability to identifgutliers, i.e., examples
that are either mislabeled in the training data, or thatranerently ambiguous and
hard to categorize. Because AdaBoost focuses its weighteohardest examples,
the examples with the highest weight often turn out to beienstl An example of
this phenomenon can be seen in Fig. 7 taken from an OCR exgmatriconducted
by Freund and Schapire [30].

When the number of outliers is very large, the emphasis dlacehe hard ex-
amples can become detrimental to the performance of AdaBobis was demon-
strated very convincingly by Dietterich [18]. Friedman,dtla and Tibshirani [34]
suggested a variant of AdaBoost, called “Gentle AdaBodstt puts less emphasis
on outliers. Ratsch, Onoda and Mdller [61] show how to texdre AdaBoost to
handle noisy data. Freund [27] suggested another algarithhed “BrownBoost,”
that takes a more radical approach that de-emphasizesrsutihen it seems clear
that they are “too hard” to classify correctly. This algbnit, which is an adaptive
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Figure 5: Comparison of the training (left) and test (riggmor using three boost-
ing methods on a six-class text classification problem fro;mREC-AP collec-

tion, as reported by Schapire and Singer [70, 71]. DiscretaBdost.MH and

discrete AdaBoost.MR are multiclass versions of AdaBobat tequire binary
({—1,+1}-valued) base classifiers, while real AdaBoost.MH is a rolalsis ver-

sion that uses “confidence-rated” (i.e., real-valued) lotesssifiers.

version of Freund’s [26] “boost-by-majority” algorithmerdhonstrates an intrigu-
ing connection between boosting and Brownian motion.

10 Conclusion

In this overview, we have seen that there have emerged a gy views or
interpretations of AdaBoost. First and foremost, AdaBasst genuine boosting
algorithm: given access to a true weak learning algorithat &tways performs a
little bit better than random guessing on every distributiwer the training set, we
can prove arbitrarily good bounds on the training error agaegalization error of
AdaBoost.

Besides this original view, AdaBoost has been interpresea@ocedure based
on functional gradient descent, as an approximation oftagregression and as
a repeated-game playing algorithm. AdaBoost has also bleenwnsto be re-
lated to many other topics, such as game theory and linegrgroning, Breg-
man distances, support-vector machines, Brownian mdtigistic regression and
maximum-entropy methods such as iterative scaling.

All of these connections and interpretations have greathaaced our under-
standing of boosting and contributed to its extension irr enere practical di-
rections, such as to logistic regression and other losgmzation problems, to
multiclass problems, to incorporate regularization andltow the integration of
prior background knowledge.
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Figure 6: Comparison of percent classification accuracywandpoken language
tasks (“How may | help you” on the left and “Help desk” on thght) as a func-
tion of the number of training examples using data and kndgdeseparately or
together, as reported by Rochery et al. [64, 65].

We also have discussed a few of the growing number of aplitabf Ada-
Boost to practical machine learning problems, such as tekispeech categoriza-
tion.
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