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The focus so far in this book has been on unsupervised learning. including topics
such as density estimation and data clustering. We turn now to a discussion of super-
vised learning. starting with regression. The goal of regression is to predict the value
of one or more continuous farget variables t given the value of a D-dimensional vec-
tor x of input variables. We have already encountered an example of a regression
problem when we considered polynomial curve fitting in Chapter 1. The polynomial
is a specific example of a broad class of functions called linear regression models.
which share the property of being linear functions of the adjustable parameters, and
which will form the focus of this chapter. The simplest form of linear regression
models are also linear functions of the input variables. However. we can obtain a
much more useful class of functions by taking linear combinations of a fixed set of
nonlinear functions of the input variables. known as basis functions. Such models
are linear functions of the parameters. which gives them simple analytical properties.
and yet can be nonlinear with respect 1o the input variables.
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3. LINEAR MODELS FOR REGRESSION

3.1.

Given a training data set comprising N observations { xn} wheren = 1...., N,
together with corresponding target values {t, }, the goal is to predict the value of ¢
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of ¢. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of ¢ for each value of x. From this conditional dis-
tribution we can make predictions of ¢, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of ¢.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y{x.w) =wy +wix; + ...+ Wpxp (3.1)
where x = (z1,....2p)T. Thisis often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters wy. . . . . wp. Itis

also, however, a linear function of the input variables x;, and this imposes mgmﬁcant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variabies. of the form

M =]

y(x.w) = wy + Z w;oi(x) (3.2)
j=1

where ¢;(x) are known as basis functions. By denoting the maximum value of the
index j by M — 1, the total number of parameters in this model will be A1.

The parameter wy allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function” ¢&y(x) = 1 so that

M1
=0
where w = (wg,....wy;—1)" and ¢ = (P, - - - - éar—1)T. In many practical ap-

plications of pattern recognition, we will apply some form of fixed pre-processing,
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or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{o;(x)}.

By using nonlinear basis functions, we allow the function y{x. w | 1o be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, 1t
also leads to some significant limitations. as we discuss in Section 3.6,

The example of polynomial regression considered in Chapter | is o particular
example of this model in which there is a single input variable . and the basis Tune-
tions take the form of powers of » so that ¢; () = /. One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region. leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions. for example

. (0 — p;)?
oilr)=expq— R A (3.4)
T 24

where the j¢; govern the locations of the basis functions in input space, and the pa
rameter & governs their spatial scale. These are usually referred 10 as “Gaussian’
basis functions. although it should be noted that they are not required to have o prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will bé multiplied by adaptive parameters ¢

Another possibility is the sigmoidal basis function of the form

=
oilr)=o0 (——L> (3.5)

\ S
where o(«] is the logistic sigmoid function defined by

; 1
ala) = ——————. (3.6)
7 1+ exp(—u)

Equivalently. we can use the “tanli’ function because this is related to the Togistic
sigmoid by tanh({a) = 20(a) - 1, and so a general linear combination ol logistic
sigmoid functions is equivalent to a general linear combination of “tanli” functions
These various choices of basis function are illustrated in Figure 3.1

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specilic {re-
quency and has infinite spatial extent. By contrast. basis functions that are locahzed
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications. it is of intercst to consider ba
sis functions that are localized in both space and frequency. leading to o class ol
functions known as wavelets. These are also defined to be mutually orthogonal. to
simplify their application. Wavelets are most applicable when the input values live
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Figure 3.1 Exampies of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

Section 1.5.5

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997). Mallat (1999).
and Vidakovic (1999).

Most of the discussion in this chapter. however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector ¢(x) of basis functions is simply the identity ¢p(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable {. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares

In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum
of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. L.et
us return to this discussion and consider the least squares approach, and its relation
to maximum likelithood, in more detail.

As before, we assume that the target variable  is given by a deterministic func-
tion y(x, w) with additive Gaussian noise so that

t=ylx,w)+e (3.7

where ¢ is a zero mean Gaussian random variable with precisjon (inverse variance
3. Thus we can write

p(tlx,w,3) = N(tly(x.w). 571). (3.8)

Recall that, if we assume a squared loss function. then the optimal prediction, for
new value of x, will be given by the conditional mean of the target variable. In the
case of a Gaussian conditional distribution of the form (3.8). the conditional mean
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will be simply
Eft|x] = /tp(ﬂx) dt = y(x, w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {xy,...,xx} with corresponding targe!
values #1,....tx. We group the target variables {¢,,} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumpuion that
these data points are drawn independently from the distribution (3.8), we obtuin the
following expression for the likelihood function, which is a function of the adjustable
parameters w and /3, in the form

N
p(AIX.w, 3) = H./\/’(t”}wTd)(x”).g’?’fl) (3.10)

n=1

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the inpui
variables. Thus x will always appear in the set of conditioning variables, und so
from now on we will drop the explicit x from expressions such as p(t|x. w. 7/ in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

¢

.
Inp(tjw,5) = Zln]\/'(tn}wqwcﬁ(x,,)j/3‘1‘)

n=1

r T

N N
> Ini3 - - n(27) - JEp(w) (32.11)

V4 y

where the sum-of-squares error function is defined by

N
Ep(w) = 32{1 —wlo(x,)} (3.12)

=1

Having written down the likelihood function, we can use maximum likelihood o
determine w and 3. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by E{w}. The gradient of the log likelihood
function (3.11) takes the form

N
Vinptjw, d) = Z {171 - WT(Z’(Xn)} B(x,)".

n=1
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Setting this gradient to zero gives

N
0= Ztn¢(xn)T -w' <Z¢ Xn Xn ) . (3.14)
n=1

Solving for w we obtain

war, = (87®) " &7t (3.15)
which are known as the normal equations for the least squares problem. Here @ is an
N x M matrix, called the design matrix, whose elements are givenby ¢,,; = (7) HEN
so that

do(x1)  d1(x1) -+ dar—a(x1)
Po(x $r(x2) 0 Pm-a(X
& 0(. 2) 1(. 2) | .1( 2) 4 (3.16)

do(xn) di(xn) -0 Pm—1(xn)
The quantity
3= (27) " (3.17)
is known as the Moore-Penrose pseudo-inverse of the matrix ® (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare mamces Indeed, if ¢ i 1s square and invertible,
then using the property (AB)~" = B~'A~! we sec that &' = &',

At this point, we can gain some insight into the role of the bias parameter wy. If
we make the bias parameter explicit, then the error function (3.12) becomes

1 N M—1
= Z{tn —wy — Z wid;(%n)}2. (3.18)
n=1 7=1
Setting the derivative with respect to wy equal to zero, and solving for w, we obtain
M-1
wy =1 — Z w,b; (3.19)
j=1
where we have defined
1 & 1 &
=~ Z:l tuy = % Z:l &5 (%n). (3.20)

Thus the bias wy compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter 3, giving

Z{t — Wi (%)} (3.21)

7:1

ﬁMI
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Figure 3.2 Geometrical interpretation of the least-squares
solution, in an N-dimensional space whose axes
are the values of ¢;,...,ty. The least-squares
regression function is obtained by finding the or-
thogonal projection of the data vector t onto the
subspace spanned by the basis functions ¢, (x)
in which each basis function is viewed as a vec-
tor ¢, of length NV with elements ¢, (x,.).

and so we see that the inverse of the noise precision is given by the residual variance
of the target values around the regression function.

3.1.2 Geometry of least squares

At this point, it is instructive to consider the geometrical interpretation of the
least-squares solution. To do this we consider an /N-dimensional space whose axes
are given by the ¢,,. sothatt = (7;..... tn)7T is a vector in this space. Each basis
function ¢;(x,, ), evaluated at the N data points, can also be represented as & vector in
the same space. denoted by ¢, as illustrated in Figure 3.2. Note that ¢ ; corresponds

to the j' column of @, whereas ¢(x,,) corresponds to the n'" row of ®. If the

number A7 of basis functions is smaller than the number N of data points. then the

M vectors ¢;(x,,) will span a linear subspace S of dimensionality A/. We define

Yy to be an N-dimensional vector whose n'* element is given by y(x,,. w). where

n=1 ..., N. Because Y is an arbitrary linear combination of the vectors ¢ . it can

live anywhere in the Af-dimensiomal subspace. The sum-of-squares error (3.12) is

then equal (up to a factor of 1/2) to the squared Euclidean distance between y and

t. Thus the least-squares solution for w corresponds to that choice of y that lies in

subspace S and that is closest to t. Intuitively, from Figure 3.2, we anticipate that

this solution corresponds to the orthogonal projection of t onto the subspace S. This

is indeed the case, as can easily be verified by noting that the solution for y is given

Faereise 3.2 by ®wy 1, and then confirming that this takes the form of an orthogonal projection.

In practice, a direct solution of the normal equations can lead to numerical diffi-

culties when &' & is close to singular. In particular, when two or more of the basis

vectors ¢ are co-linear, or nearly so, the resulting parameter values can have large

magnitudes. Such near degeneracies will not be uncommon when dealing with real

data sets. The resulting numerical difficulties can be addressed using the technique

of singular value decomposition. or SVD (Press et al., 1992; Bishop and Nabney,

2008). Note that the addition of a regularization term ensures that the matrix is non-
singular, even in the presence of degeneracies.

3.1.3 Sequential learning

Batch techniques, such as the maximum likelihood solution (3.15), which in-
volve processing the entire training set in one go, can be computationally costly for
large data sets. As we have discussed in Chapter 1, if the data set is sufficiently large.
it may be worthwhile to use sequential algorithms. also known as on-line algorithms,

HIIHIIIIIM ' I' “
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in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent. as follows. If
the error function comprises a sum over data points £ = Zn E,,. then after presen-
tdtion of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

wiTt) — Wl nVE, (3.22)

where 7 denotes the iteration number, and # is a learning rate parameter. We shall
discuss the choice of value for 7 shortly. The value of w is initialized to some starting
vector w', For the case of the sum-of-squares error function (3.12). this gives

Wit = w y(t, —w T, e, (3.23)

where ¢,, = ¢(x,). This is known as least-mean-squares or the LMS algorithm.
The value of 7 needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares

In Section 1.1, we introduced the idea of adding a regularization term to an
error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(W) + AEw (w) (3.24)
where ) is the regularization coefficient that controls the relative importance of the
data-dependent error Fp(w) and the regularization term Fy (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

1
Ew(w) = inw. (3.25)

If we also consider the sum-of-squares error function given by

N
E(w) = % > {tn = wlo(xn)) (3.26)

n=1

then the total error function becomes

1< A
5 D {tn = W (xa)) + —inw. (3.27)

n=1

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statstics. it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards
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Figure 3.3 Contours of the regularization term in (3.29) for various values of the parametar

zero. It has the advantage that the error function remains a quadratic function of
w. and so Its exact minimizer can be found in closed form. Specifically. setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w=(AM+3T®) 3"t (3.28)

This represents a simple extension of the least-squares solution (3.15)
A more general regularizer is sometimes used. for which the regularized error

takes the form
1 ' 3 ) A : . i
Ez{f’” 7Wq¢(xﬂ)}k+52"“'./" (3.29)

where ¢ = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con
tours of the regularization function for different values of ¢.
The case of ¢ = 1 1s know as the lasso in the statistics literature (Tibshirani,
1996). Tt has the property that if A is sufficiently large, some of the coefticients
w; are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
fxeicise 5.5 1o minimizing the unregularized sum-of-squares error (3.12) subject to the constramt

. A

E w17 <y (3.30)

Jee1

for an appropriate value of the parameter 7). where the two approaches can be related
Appendiv E using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,
which shows that the minimum of the error function. subject to the construint (3.3())
As A s increased. so an increasing number of parameters are driven to zero.
Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective mode!l complexity.
However, the problem of determining the optimal model complexity 15 then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient A. We shall return to the 1ssue of
model complexity later in this chapter.
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Figure 3.4 Plot of the contours W2y
of the unregularized error function

{blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer ¢ = 2 on the ieft and the lasso

regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w*.
The lasso gives a sparse solution in
which wi = 0.

-
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For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs

So far, we have considered the case of a single target variable ¢. In some applica-
tions, we may wish to predict A’ > 1 target variables. which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However. a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

yvix.w) = Wha(x) (3.31)

where y is a K'-dimensional column vector, W is an M x A matrix of parameters,
and ¢(x) is an M -dimensional column vector with elements @;(x). with g(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(tix. W, 3) = Nt/ WTp(x), 37'1)

(3.32)

If we have a set of observations t,.....tx, we can combine these into a matrix T
of size N » K such that the n™ row is given by t". Similarly, we can combine the
Input vectors x;. ..., Xy into a matrix X. The log likelihood function is then given

by

N
mp(TIX.W.3) = Y WN(t,[We(x,). 4T

n=1

AQA i <2_i> - 52 [t = Wheix, )| 3.33)

=]

Il
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As before. we can maximize this function with respect to W, giving
W, = (€78) 7 &TT. (3.34)
If we examine this result for each target variable #4, we have
wi = (@T®) @, = Bt (3.35)

where t;, is an /V-dimensional column vector with components ¢,,;, forn = 1.. . N
Thus the solution to the regression problem decouples between the different targe
variables, and we need only compute a single pscudo-inverse matrix &' which is
shared by all of the vectors wy.

The extension to general Gaussian noise distributions having arbitrary covari-
ance matrices is straightforward. Again, this leads to a decoupling into A inde-
pendent regression problems. This result is unsurprising because the parameters W
define only the mean of the Gaussian noise distribution, and we know from Sec-
tion 2.3.4 that the maximum likelihood solution for the mean of a multivariate Gaus-
sian is independent of the covariance. From now on, we shall therefore consider a
single target variable ¢ for simplicity.

The Bias-Variance Decomposition

| 'l”l’"M l |
i
| |

So far in our discussion of linear models for regression, we have assumed that the
form and number of basis functions are both fixed. As we have seen in Chapter 1,
the use of maximum likelihood, or equivalently least squares, can lead to severe
over-fitting if complex models are trained using data sets of limited size. However,
limiting the number of basis functions in order to avoid over-fitting has the side
effect of limiting the flexibility of the model to capture interesting and important
trends in the data. Although the introduction of regularization terms can control
over-fitting for models with many parameters, this raises the question of how 1o
determine a suitable value for the regularization coefficient A. Seeking the solution
that minimizes the regularized error function with respect to both the weight vector
w and the regularization coefficient A is clearly not the right approach since this
leads to the unregularized solution with A = ().

As we have seen in earlier chapters. the phenomenon of over-fitting is really an
unfortunate property of maximum likelihood and does not arise when we marginalize
over parameters in a Bayesian setting. In this chapter, we shall consider the Bayesian
view of model complexity in some depth. Before doing so. however, it is instructive
to consider a frequentist viewpoint of the model complexity issue. known as the hias-
variance trade-off. Although we shall introduce this concept in the context of linear
basis function models, where it is easy to illustrate the ideas using simple examples,
the discussion has more general applicability.

In Section 1.5.5. when we discussed decision theory for regression problems,
we considered various loss functions each of which leads to a corresponding optimal
prediction once we are given the conditional distribution p(#]x). A popular choice is




148 3. LINEAR MODELS FOR REGRESSION

the squared loss function, for which the optimal prediction is given by the conditional
expectation, which we denote by /(x) and which is given by

hix) =E[t|x] = /tp(tix) dt. (3.36)

At this point, it is worth distinguishing between the squared loss function arising
from decision theory and the sum-of-squares error function that arose in the maxi-
mum likelihood estimation of model parameters. We might use more sophisticated
techniques than least squares, for example regularization or a fully Bayesian ap-
proach, to determine the conditional distribution p(#|x). These can all be combined
with the squared loss function for the purpose of making predictions.

We showed in Section 1.5.5 that the expected squared loss can be written in the
form

E[L] = /{’U(X) - h/(X)}Qp(x) dx + /{h,(x) —t}p(x. 1) dx dt. (3.37)

Recall that the second term, which is independent of y(x]. arises from the intrinsic
noise on the data and represents the minimum achievable value of the expected loss.
The first term depends on our choice for the function y(x), and we will seek a so-
lution for y(x) which makes this term a minimum. Because it is nonnegative, the
smallest that we can hope to make this term is zero. If we had an unlimited supply of
data (and unlimited computational resources), we could in principle find the regres-
sion function h(x) to any desired degree of accuracy, and this would represent the
optimal choice for y{x). However, in practice we have a data set D containing only
a finite number N of data points, and consequently we do not know the regression
function h(x) exactly.

If we model the h(x) using a parametric function y(x, w) governed by a pa-
rameter vector w, then from a Bayesian perspective the uncertainty in our mode] is
expressed through a posterior distribution over w. A frequentist treatment, however,
involves making a point estimate of w based on the data set D. and tries instead
to interpret the uncertainty of this estimate through the following thought experi-
ment. Suppose we had a large number of data sets each of size N and each drawn
independently from the distribution p(¢,x). For any given data set D, we can run
our learning algorithm and obtain a prediction function y(x: D). Different data sets
from the ensemble will give different functions and consequently different values of
the squared loss. The performance of a particular learning algorithm is then assessed
by taking the average over this ensemble of data sets.

Consider the integrand of the first term in (3.37). which for a particular data set
D takes the form

{y(x:D) — h(x)}". (3.38)

Because this quantity will be dependent on the particular data set D. we take its aver-
age over the ensemble of data sets. If we add and subtract the quantity Ep[y(x: D)]
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inside the braces. and then expand. we obtain

{yx:D) = Eply(x: D) + Epjy(x: D) — hix)}-
= {yx:D) = Eplytx: D)} ~ {Eplyix: Dy = lixil-
F2{yx:Di = Eplylx: D) HEply(x: D)~ hixy!. (3.39)
We now take the expectation of this expression with respect to D and note that the
final term will vanish. giving

Ep {yix:D) = hix)}?]
= {Eply(x:D) - hix)} - Zp {{,{/(X:YN ~ Eplyx: D1 (3.40)
(bias)” viriuncy

We sec that the expected squared difference between yix: D1 and the reeression
function 11(x) can be expressed as the sum of two terms. The first term. called the
squared bias. represents the extent to which the average prediction over all data sets
differs from the desired regression function. The sccond term. called the variance.
measures the extent to which the solutions for individual data sets varny around their
average, and hence this measures the extent to which the function XD s sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far. we have considered a single input value x. If we substitute this expansion
back into (3.37). we obtain the following decomposition of the expected squared Toss

x

expected loss = (bias)” + variance = noise (3410
where
(bias)® = /A{E’pf’!/(:XI'[)) —ix) b pixgdx (3.42)
variance = / Ep :{f/(x:/D) - M‘im’g/(xzp)}}"’} Pixdx 13.43)
noise = /‘«fh(x) — i plx ) dxedi (344

and the bias and variance terms now refer 1o integrated quantities.

Our goal is to minimize the expected loss. which we have decomposed into the
sum ol a {squared) bias. a variance. and a constant noise term. As we shall see. there
is a trade-off between bias and variance. with very flexible models having fow bias
and high variance. and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal

data set from Chapter 1. Here we generate 100 data sets. each containing N = 27,
data points. independently from the sinusoidal curve /i) = sin:27 . The data
sets are indexed by [ = 1..... L. where I = 100, and for cach data set D7 we

w

1
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Figure 3.5 Illlustration of the dependence of bias and variance on model complexity, governed by a regulariza
tion parameter ), using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of param:
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets fol
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the correspanding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green)
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Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond- 0.15
ing to the results shown in Fig-
ure 3.5. Also shown is the average 0.12}

test set error for a test data set size (bias)® + variance
of 1000 points. The minimum value 9| test error

of (bias)” + variance occurs around

InA = —0.31, which is close to the |

.
(bias)
variance

value that gives the minimum error 0.06
on the test data.
0.03¢
0 - : .
-3 -2 -1 0 1 2

A

fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y'*(z) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient ) that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which A is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple sqlutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

L
yla) = % ]Z; y () (3.45)
and the integrated squared bias and integrated variance are then given by
. 1 e . |
(bias)* = - Z {Blzn) = b))} (3.46)
, R I N
variance = nz::l 7 ]z_; {y (zn) — y(x,,_)} (3.47)

where the integral over  weighted by the distribution p(z) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of In A in Figure 3.6. We see that small
values of A allow the model to become finely tuned to the noise on each individual
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data set leading to large variance. Conversely, a large value of A pulls the weight
parameters towards zero leading to large bias.

Although the bias-variance decomposition may provide some interesting in-
sights into the model complexity issue from a frequentist perspective, it is of im-
ited practical value, because the bias-variance decomposition is based on averages
with respect to ensembles of data sets, whereas in practice we have only the single
observed data set. If we had a large number of independent training sets of a given
size. we would be better off combining them into a single large training set. which
of course would reduce the level of over-fitting for a given model complexity.

Given these limitations. we turn in the next section to a Bayesian treatment of
linear basis function models, which not only provides powerful insights into the
issues of over-fitting but which also leads to practical techniques for addressing the
question model complexity.




