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1 Overview

In this lecture, we are going to finish the description of splay trees and start with priority queues.

2 Amortized Analysis of Splay Tree Operations

Recall that in order to acces a node z in a splay tree, we use the standard binary search tree
algorithm to find x and then use the splay operation to move x to the root. We are going to show
that the amortized cost of such a splay operation is O(logn).

For the analysis, we will use a potential function ®. To define ®, assign each node x in the tree
a positive weight w(z). Then we define the size of x, s(z), as the total weight of x and all its
descendants in the splay tree, and the rank of x, r(z), as log s(x). In the simplest case, we can set
all the weights to 1, then the size of z corresponds to the size of the subtree rooted in x (between
1 and n). The potential of the splay tree is defined as the sum of the ranks of all the nodes in the
tree.

Recall that the amortized cost of an operation is defined as the actual cost of the operation plus the
change in potential. In order to analyze a splay operation, we look at the individual splay steps and
see how the potential changes. By a clever case analysis, part of which is shown in the MIT notes,
we can see that the amortized cost of a zig-zig or zig-zag operation on x is at most 3(r'(z) — r(z))
and the amortized cost of a zig operation is at most 3(r'(z) — r(x)) + 1, where r(z), r'(z) denote
the rank of x before and after the splay step.

For completeness, we give the details for all cases. For figures of the various cases, see the MIT
notes, where a zig-zig step is called an rr or Il step, a zig-zag step is called an 7l or Ir step, and a
zig step is called an r or [ step. Let x be the node at which the step occurs, let y be its parent, and
let z be its grandparent (both before the step). Unprimed values are before the step, primed values
are after the step. In the case of a zig-zig or zig-zag step, the amortized cost of the step is 1 (for
the actual cost of the two rotations) plus 7/(x) + r'(y) + r'(2) minus r(z) 4+ r(y) + r(z), since only
x, y, and z can change in total weight as a result of the step. We have r(z) < r(y) < r(z) = r'(x).
Also r'(z) > r'(y) and () > 7/(z). The amortized cost of the step is thus

L+ (y) +7(2) = () — ().

In the case of a zig-zig step, we see (referring to Figure 3.1 of the MIT notes) that s(x)+s'(z) < §'(z),
since the subtree rooted at x before the step and the subtree rooted at z after the step are node-
disjoint and together contain all descendants of z after the step except y. Thus either s'(z) > 2s(x),
or §'(x) > 2¢'(z). Taking logs and rearranging, either r'(z) — r(z) > 1, or r'(z) — r’(2) > 1. In the



former case, the amortized cost of the step is less than
r'(z) —r(x) + 7' (z) +r'(x) — r(z) — r(z) = 3(r'(x) — r(x)).
In the latter case, the amortized cost of the step is less than

r(z) —7r'(2) +7'(x) + 7' (2) — r(z) —r(z) =2(r'(x) — r(z)) < 3(r'(x) — r(z)).

In the case of a zig-zag step, we see (referring to Figure 3.2 of the MIT notes) that s'(y) + §'(z) <
§'(x), since the subtrees rooted at y and z after the step are node-disjoint and contain all descendants
of z after the step except x. Taking logs and rearranging, either r/(z)—r'(y) > 1, or r'(z)—r'(2) > 1.
In the former case, the amortized cost of the step is less than

(@) =r'(y) +r'(y) + (@) — (@) - r(x) = 20" (2) - r(2)) <3(r'(z) —r(2)).

In the latter case, the amortized cost of the step is less than 3(r/(x) — r(z)) by the same argument
as in the latter case of a zig-zig step.

Finally, in the case of a zig step, the amortized cost is 1 (for the rotation) plus r'(z) 4+ r/(y) minus
r(x) 4+ r(y). This is at most

1+42r'(z) — 2r(z) <1+ 3(r'(z) — r(x)).

Now, assume that we splay a node x and let r;(x) be the rank of = after the ith splay step
(0 < i < k). Since in each splay operation there can be at most one zig-step, the total amortized
cost of the splay operation is at most

k
1+ 3(ri(e) = ria (@) = 14 3(rp(z) — ro()).
=1

Given our definition of rank, this is

3log

+1,
so(z)

where S denotes the total weight of all the nodes in the tree and so(x) is the initial size of z. If all
the weights are chosen to be 1, this is O(logn).

Now, what does this analysis mean? Assume that we have a tree of n nodes, and we perform m
accesses with splaying. Then the total cost of this sequence of operations is the amortized cost
plus ®g — ®,,,, where ®(y, ®,, denote the initial and final potential. Since the final potential is
nonnegative and the initial potential is at most nlogn (using unit weights), we get a total cost of
O((m +n)logn).

3 Imnsertion and Deletion

In order to insert a node into a splay tree, we perform standard binary search tree insertion and
then splay on the inserted node. The above analysis shows that the amortized cost for the splay
step is O(logn), but we must also account for the increase in potential when we insert the node.
In the MIT lecture notes, it is shown that this increase is also O(logn).



Similarly, for deletion, we perform standard binary search tree deletion and splay on the parent of
the deleted node. The amortized cost for the splay is O(logn), and the potential can only decrease
when we remove a node.

Hence, if we start with an empty tree and perform an arbitrary sequence of m insert, access, and
delete operations, the total time is O(mlogn).

4 Splay Trees vs Red Black Trees, Join and Split

What do splay trees buy us compared to red black trees? Firstly, we can save the space needed for
the color bits, and the restructuring rules are simpler. On the other hand, we need to restructure
the tree for every access.

On splay trees, we can implement joins and splits very easily. Indeed, assume we are given two
splay trees T, T5 such that all the nodes in 7T} are smaller than all the nodes in 7T5. Then we can
join them by finding the maximum element in 77, splaying it to the root, and setting 75 as its right
child. Splitting can be done similarly: Find the node to split on, splay it to the root and then split
the tree. The amortized cost for join and split is O(logn).

5 Static Optimality and the Dynamic Optimality Conjecture

Another nice property of splay trees is that they are self-adjusting. One way of making this precise
is the following: Assume we are given a sequence of m accesses, and for each element, we know how
often it is accessed during this sequence. If we set the weight of node x to this frequency, then we
get that the amortized cost to access x is O(log g its7) = O(log pix), where p, is the access
probability of z.

If we know the access frequencies in advance, we can also build a static binary search tree which
gives the optimal expected access time for these frequencies, and one can show that the splay tree
performance is within a constant factor of the optimal static binary search tree. This property is
known as static optimality of splay trees, and there are several similar properties.

However, one question remains. What if we compare splay trees not against the optimum static
search tree, but against the optimum dynamic search tree? That is, we assume that there is an
adversary who knows the entire access sequence in advance and can perform arbitrary rotations
on his search tree in anticipation of the future. How do splay trees compare to such an adversary?
It is conjectured that even then splay trees are within a constant factor of the optimum. This
is known as the dynamic optimality conjecture. For example, if we consider the access sequence
1,2,3,...,m,1,2,...,n,1,..., aclever adversary only incurs a total cost of O(m) (counting rotations
and walks in the tree). It can be shown that splay trees also take O(m) time, but the proof is very
complicated. There are data structures which provably achieve total cost which is within a factor
of O(loglogn) of the optimum cost.



6 Heaps/Priority Queues

In the next two lectures, we are going to consider heap data structures. The problem is as follows:
We want to maintain a set of priorities, and support the operations insert, delete, findMin and
deleteMin. One way of doing this is to use the classical binary heap, which stores a complete
heap-ordered tree in an array and performs all the operations in O(logn) worst case time. We can
generalize them to k-ary heaps, achieving a trade-off between insertion and deletion times. In the
next two classes, we will consider more sophisticated heap structures.



