
network connectivity

quick union

quick find

weighted

applications

1

Union-Find Algorithms

• connectivity

• quick union

• quick find

• qfwpc

• applications

Subtext of today’s lecture (and this course)

Steps to developing an usable algorithm.
! Define the problem.
! Find an algorithm to solve it.
! Fast enough?
! If not, figure out why.
! Find a way to address the problem.
! Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

2

• connectivity

• quick union

• quick find

• qfwpc

• applications

Network connectivity

Basic abstractions
! set of objects
! union command: connect two objects
! find query: is there a path connecting one object to another?

3

• connectivity

• quick union

• quick find

• qfwpc

• applicationsUnion-find applications involve manipulating objects of all types.
! Computers in a network.
! Web pages on the Internet.
! Transistors in a computer chip.
! Variable name aliases.
! Pixels in a digital photo.
! Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.
! Details not relevant to union-find.
! Integers allow quick access to object-related info.
! Could use symbol table to translate from object names

4

Objects

use as array index

0 7

2 3

8

4

6 5 91

stay tuned

• connectivity

• quick union

• quick find

• qfwpc

• applications

5

Union-find abstractions

Simple model captures the essential nature of connectivity.

! Objects.

! Disjoint sets of objects.

! Find query: are objects 2 and 9 in the same set?

! Union command: merge sets containing 3 and 8.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

0 1 { 2 3 4 8 9 } 7

0 1 { 2 3 9 } { 5-6 } 7 { 4-8 }

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0 1 2 3 4 5 6 7 8 9 grid points

• connectivity

• quick union

• quick find

• qfwpc

• applications

Network connectivity example

Input: sequence of object pairs
! do find query for each pair
! if connected, ignore
! otherwise, do union command (and print)

6

 in out evidence

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9 (2–3–4-9)

 5 9 5 9

 7 3 7 3

 4 8 4 8

 5 6 (5-6)

 0 2 (2–3-4–8-0)

 6 1 6 1

0 7

2 3

8

4

6 5 91

• connectivity

• quick union

• quick find

• qfwpc

• applications

Connected components

Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

7

 in out

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9

 5 9 5 9

 7 3 7 3

0

2 3

8

4

6 5 91

7 union commands

3 = 10-7 components

7

• connectivity

• quick union

• quick find

• qfwpc

• applications

8

Network Connectivity

63 components

• connectivity

• quick union

• quick find

• qfwpc

• applications

9

Union-find abstractions

! Objects.

! Disjoint sets of objects.

! Find queries: are two objects in the same set?

! Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

! Find queries and union commands may be intermixed.

! Number of operations M can be huge.

! Number of objects N can be huge.

• connectivity

• quick union

• quick find

• qfwpc

• applications

10

Quick-Find [eager approach]

Data structure.
! Integer array id[] of size N.
! Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 9 9 6 6 7 8 9
5 and 6 are connected
2, 3, 4, and 9 are connected

• connectivity

• quick union

• quick find

• qfwpc

• applications

11

Quick-Find [eager approach]

Data structure.
! Integer array id[] of size N.
! Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q,

change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 9 9 6 6 7 8 9
5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 6 6 6 6 6 7 8 6

id[3] = 9; id[6] = 6
3 and 6 not connected

problem: many values can change

• connectivity

• quick union

• quick find

• qfwpc

• applications

12

Quick-Find: Example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

problem: many values can change

• connectivity

• quick union

• quick find

• qfwpc

• applications

public class QuickFind

{

 private int[] id;

 public QuickFind(int N)

 {

 id = new int[N];

 for (int i = 0; i < N; i++)

 id[i] = i;

 }

 public boolean find(int p, int q)

 {

 return id[p] == id[q];

 }

 public void unite(int p, int q)

 {

 int pid = id[p];

 for (int i = 0; i < id.length; i++)

 if (id[i] == pid) id[i] = id[q];

 }

}

13

Quick-Find: Java Implementation

1 operation

N operations

set id of each
object to itself

• connectivity

• quick union

• quick find

• qfwpc

• applications

14

Quick-find is too slow

Quick-find algorithm may take ~MN steps

to process M union commands on N objects

Rough standard (for now).
! 109 operations per second.
! 109 words of main memory.
! Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
! 1010 edges connecting 109 nodes.
! Quick-find takes more than 1018 operations.
! 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
! New computer may be 10x as fast.
! But, has 10x as much memory so problem may be 10x bigger.
! With quadratic algorithm, takes 10x as long!

a truism (roughly) since 1950 !

• connectivity

• quick union

• quick find

• qfwpc

• applications

15

Quick-Union [lazy approach]

Data structure.
! Integer array id[] of size N.
! Interpretation: id[i] is parent of i.
! Root of i is id[id[id[...id[i]...]]].

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

keep going until it doesn’t change

• connectivity

• quick union

• quick find

• qfwpc

• applications

16

Quick-Union [lazy approach]

Data structure.
! Integer array id[] of size N.
! Interpretation: id[i] is parent of i.
! Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 9 7 8 9

4

7

3 5

0 1 9

6

8

2

only one value changes

p q

keep going until it doesn’t change

• connectivity

• quick union

• quick find

• qfwpc

• applications

17

Quick-Union: Example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem: trees can get tall

• connectivity

• quick union

• quick find

• qfwpc

• applications

18

Quick-Union: Java Implementation

time proportional
to depth of p and q

time proportional
to depth of p and q

time proportional
to depth of i

public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;

 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {

 int i = root(p);
 int j = root(q);
 id[i] = j;
 }
}

• connectivity

• quick union

• quick find

• qfwpc

• applications

19

Quick union is also too slow

Quick-find defect.
! Union too expensive (N steps).
! Trees are flat, but too expensive to keep them flat.

Quick-union defect.
! Trees can get tall.
! Find too expensive (could be N steps)

Data Structure Union Find

Quick-find N 1

Quick-union 1 N worst case

assumes find
already done

• connectivity

• quick union

• quick find

• qfwpc

• applications

20

Weighted Quick-Union

Weighted quick-union.
! Modify quick-union to avoid tall trees.
! Keep track of size of each component.
! Balance by linking small tree below large one.

Ex. Union of 5 and 3.
! Quick union: link 9 to 6.
! Weighted quick union: link 6 to 9.

4

7

3

5

0 1 9 6 8

2

p

q

4 211 1 1size

• connectivity

• quick union

• quick find

• qfwpc

• applications

21

Weighted quick-union example

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem: trees stay flat

• connectivity

• quick union

• quick find

• qfwpc

• applications

22

Weighted Quick-Union: Java Implementation

Java implementation.
! Almost identical to quick-union.
! Maintain extra array sz[] to count number of elements

in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to
! merge smaller tree into larger tree
! update the sz[] array.

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }

else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }

• connectivity

• quick union

• quick find

• qfwpc

• applications

23

Weighted quick-union analysis

Analysis.
! Find: takes time proportional to depth of p and q.
! Union: takes constant time, given roots.
! Fact: depth is at most lg N. [needs proof]

Stop at guaranteed acceptable performance? No, easy to improve further.

Data Structure Union Find

Quick-find N 1

Quick-union 1 N

Weighted QU lg N lg N

• connectivity

• quick union

• quick find

• qfwpc

• applications

24

Path compression. Just after computing the root of i,

set the id of each examined node to root(i).

Path Compression

2

41110

2

54

7

8

1110

root(9)

0

1

0

3

6

9

9

78

136

5

• connectivity

• quick union

• quick find

• qfwpc

• applications
Path compression.
! Standard implementation: add second loop to root() to set

the id of each examined node to the root.
! Simpler one-pass variant: make every other node in path

point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

25

Weighted Quick-Union with Path Compression

only one extra line of code !

public int root(int i)

{

 while (i != id[i])

 {

 id[i] = id[id[i]];

 i = id[i];

 }

 return i;

}

• connectivity

• quick union

• quick find

• qfwpc

• applications

26

Weighted Quick-Union with Path Compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem: trees stay VERY flat

• connectivity

• quick union

• quick find

• qfwpc

• applications

27

WQUPC performance

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M lg* N) time.
! Proof is very difficult.
! But the algorithm is still simple!

Linear algorithm?
! Cost within constant factor of reading in the data.
! In theory, WQUPC is not quite linear.
! In practice, WQUPC is linear.

Amazing fact: No algorithm can do better!

because lg* N is a constant
in this universe

number of times needed to take
the lg of a number until reaching 1

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

• connectivity

• quick union

• quick find

• qfwpc

• applications

28

Summary

Ex. Huge practical problem.
! 1010 edges connecting 109 nodes.
! WQUPC reduces time from 3,000 years to 1 minute.
! Supercomputer won't help much.
! Good algorithm makes solution possible.

Bottom line.

 WQUPC makes it possible to solve problems

 that could not otherwise be addressed

M union-find ops on a set of N objects

Algorithm Worst-case time

Quick-find M N

Quick-union M N

Weighted QU N + M log N

Path compression N + M log N

Weighted + path (M + N) lg* N

WQUPC on Java cell phone beats QF on supercomputer!

• connectivity

• quick union

• quick find

• qfwpc

• applications

29

Union-find applications

! Network connectivity.
! Percolation.
! Image processing.
! Least common ancestor.
! Equivalence of finite state automata.
! Hinley-Milner polymorphic type inference.
! Kruskal's minimum spanning tree algorithm.
! Games (Go, Hex)
! Compiling equivalence statements in Fortran.

• connectivity

• quick union

• quick find

• qfwpc

• applications

Percolation

Percolation phase-transition.
! Two parallel conducting bars (top and bottom).
! Electricity flows from a site to one of its 4 neighbors

if both are occupied by conductors.
! Model: each site is a conductor with probability p.

30

Q. What is percolation threshold

p* at which charge carriers can

percolate from top to bottom?

• connectivity

• quick union

• quick find

• qfwpc

• applications

31

! Initialize whole grid to be insulators
! Make top and bottom row conductors
! Make random sites conductors until find(top, bottom)
! conductor percentage estimates p*

UF solution for percolation

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9

14 15 16 16 16 16 20 21

14 14 28 29 30 31 32 33

14 39 40 1 42 43 32 45

50 1 52 1 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 1 49

58 1 1 1

1 1 1 1 insulator

conductor

top

bottom

7

0 0 0 0

0

• connectivity

• quick union

• quick find

• qfwpc

• applications

32

Q. What is percolation threshold p* at which charge carriers

can percolate from top to bottom?

A. ~ 0.592746 for square lattices.

Why is UF solution better than solution in IntroProgramming 2.4?

Percolation

0 0 0 0 0 0 0 0

2 3 4 5 6 0 8 9

14 15 0 0 0 0 20 21

14 14 28 29 30 31 32 33

14 39 40 1 42 43 32 45

50 1 52 1 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 1 49

58 1 1 1

1 1 1 1 insulator

conductor

top

bottom

percolation constant known
 only via simulation

• connectivity

• quick union

• quick find

• qfwpc

• applications

33

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

! Two players alternate in picking a cell in a hex grid.
! Black: make a black path from upper left to lower right.
! White: make a white path from lower left to upper right.

Goal. Algorithm to detect when a player has won.

Reference: http://mathworld.wolfram.com/GameofHex.html

• connectivity

• quick union

• quick find

• qfwpc

• applications

Subtext of today’s lecture (and this course)

Steps to developing an usable algorithm.
! Define the problem.
! Find an algorithm to solve it.
! Fast enough?
! If not, figure out why.
! Find a way to address the problem.
! Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

34

