

Network connectivity

Basic abstractions

- set of objects
- union command: connect two objects
- find query: is there a path connecting one object to another?

- connectivity
- quick union
- quick find
- applications

Union-find applications involve manipulating objects of all types.

- Computers in a network
- Web pages on the Internet

Transistors in a computer chip.
Variable name aliases.

- Pixels in a digital photo

Metallic sites in a composite system.

When programming, convenient to name them 0 to $\mathrm{N}-1$.

- Details not relevant to union-find.

symbol to translate from object names

Simple model captures the essential nature of connectivity.

- applications

Connected components

Connected component: set of mutually connected vertices

- Objects.$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
grid points
- Disjoint sets of objects.

```
0 1 {239}{56} 7 {4 8}
```

- Find query: are objects 2 and 9 in the same set?

are two grid points connected?
- Union command: merge sets containing 3 and 8.

$$
0 \quad 1 \quad\{234489\}
$$

Each union command reduces by 1 the number of components

Union-find abstractions	connectivity $:$ quick union $:$ quick find $:$ qfwpc \bullet applications

- Objects.
- Disjoint sets of objects.
- Find queries: are two objects in the same set?
- Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.

Quick-Find [eager approach]

- quick unio
- afwpc
- applications

Data structure.

- Integer array id[] of size n.
- Interpretation: p and q are connected if they have the same id.

i	0	1	2	3	4	5	6	7	8	9	5 and 6 are connected
id[i]	0	1	9	9	9	6	6	7	8	9	$2,3,4$, and 9 are connected

Find. Check if p and q have the same id.

$$
\begin{aligned}
& \text { id[3]= 9; id[6]=6} \\
& 3 \text { and } 6 \text { not connected }
\end{aligned}
$$

Union. To merge components containing p and q , change all entries with id[p] to id[q]

Quick-Union [lazy approach]

Data structure.

- Integer array id[] of size n.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].
$\begin{array}{ccccccccccc}i \\ i d[i] & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9\end{array}$
(0)

3's root is 9; 5 's root is 6

Quick-Union [lazy approach]

Data structure.

- Integer array id[] of size n
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

```
i
```

Find. Check if p and q have the same root.

Union. Set the id of q 's root to the id of p 's root.

${ }^{3}$'s root is 9: 5's root is 6 3 and 5 are not connected

- 10^{10} edges connecting 10^{9} nodes.
- Quick-find takes more than 10^{18} operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes 10x as long!

Quick union is also too slow

Quick-find defect.

- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N steps)

Weighted Quick-Union

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.

- Quick union: link 9 to 6
- Weighted quick union: link 6 to 9 .

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.
- Fact: depth is at most $\lg N$. [needs proof]

Data Structure	Union	Find
Quick-find	N	1
Quick-union	1	N
Weighted QU	$\lg N$	$\lg N$

Stop at guaranteed acceptable performance? No, easy to improve further.

Path Compression

Path compression. Just after computing the root of i,

- applications set the id of each examined node to root(i).

Weighted Quick-Union: Java Implementation
Java implementation.
- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements
in the tree rooted at i.
Find. Identical to quick-union.
Union. Modify quick-union to
- merge smaller tree into larger tree
- update the sz[] array.
- connectivity
- quick find
- quick fin
- applications

\qquad
Maintain extra array sz[] to count number of elements in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to
merge smaller tree into larger tree

Path compression.

- Standard implementation: add second loop to root () to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

```
```

public int root(int i)

```
```

public int root(int i)
while (i != id[i])
while (i != id[i])
{ id[i] = id[id[i]];
{ id[i] = id[id[i]];
i=id[i];
i=id[i];
}
}
}
}
}

```
```

}

```
```

only one extra line of code !

In practice. No reason not to! Keeps tree almost completely flat.

Theorem. Starting from an empty data structure, any sequence

- applications
of M union and find operations on N objects takes $O(N+M$ lg* $N)$ time.
- Proof is very difficult.
- But the algorithm is still simple!
\uparrow
number of times needed to take
the \lg of a number until reaching 1

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

> because $\lg * N$ is a constant
> in this universe

N	$\lg ^{\star} \mathrm{N}$
1	0
2	1
4	2
16	3
65536	4
265536	5

Amazing fact: No algorithm can do better!
\checkmark Network connectivity.

- Percolation.
- Image processing.
- Least common ancestor.
- Equivalence of finite state automata.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Games (Go, Hex)
- Compiling equivalence statements in Fortran.

UF solution for percolation

- connectivity - quick unio -a qwpc
- applications
- Initialize whole grid to be insulators
- Make top and bottom row conductors

Make random sites conductors until find(top, bottom)

- conductor percentage estimates p^{\star}

bottom

[^0]Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

- applications
- Two players alternate in picking a cell in a hex grid
- Black: make a black path from upper left to lower right.
- White: make a white path from lower left to upper right.

Goal. Algorithm to detect when a player has won.

Subtext of today's lecture (and this course)	- connectivity - quick union
Steps to developing an usable algorithm.	- gfwpc - applications

- applications
- Define the problem.
- Find an algorithm to solve it.

Fast enough?
If not, figure out why.

- Find a way to address the problem.
- Iterate until satisfied.

The scientific method
Mathematical models and computational complexity

[^0]: Why is UF solution better than solution in IntroProgramming 2.4?

