
Page 1 of 4 

Princeton University 
COS 217:  Introduction to Programming Systems 

Spring 2007 Final Exam Preparation 
 
 
Professor Appel's Study Guide for the Final Exam 
 
1.  Understand any C program in all 12 weeks of the lecture notes (exception: don't 

bother with slides 126 and 154). 
 a. Convert-to-uppercase (slides 34-45) 
 b. Capitalize first letter (49-63) 
 c. One-line emacs (91-120, 261-280), complete program at     

   http://www.cs.princeton.edu/courses/archive/spr07/cos217/one-line-emacs/  
 d. Stack (157-180) 
 and smaller program fragments on other slides 
2.  Review all the programming assignments you did. 
3.  Understand the alpha-beta algorithm. 
4.  Understand the mathematical derivation of the Naive Bayes algorithm. 
5.  Be prepared to read or write an assembly-language program involving local variables, 

global variables, characters, integers, arrays, structs, pointers, or functions. 
6.  Understand in general what an operating system does for you. 
7.  Understand modularity. 
 
Bonus: what's not on the exam! 
 
1.  IA-32 instruction encodings (opcode, modR/M, etc.). 
2.  Segment registers and other "registers you don't care about." 
3.  Incremental evaluation of heuristic functions. 
4.  Regular expressions. 
 
Topics 
 
You are responsible for all material covered in lectures, precepts, assignments, and 
required readings.  This is a non-exhaustive list of topics that were covered.  Topics that 
were covered after the midterm exam are in boldface. 
 
1.  C programming 

The program preparation process 
Memory layout:  text, stack, heap, rodata, data, bss sections 
Data types 
Variable declarations and definitions 
Variable scope, linkage, and duration/extent 
Variables vs. values 
Operators 
Statements 
Function declarations and definitions 



Page 2 of 4 

Pointers 
Call-by-value and call-by-reference 
Arrays 
Strings 
Command-line arguments 
Constants: #define, enumerations, “constant variables” 
Input/output functions 
Text files 
Structures 
Dynamic memory management:  malloc() and free() 
Dynamic memory management errors:  dangling ptr., memory leak, multiple free 
Void pointers 
Function pointers and function callbacks 
Macros and their dangers (see King Section 14.3) 
The assert() macro 
The fwrite() and fread() functions 

 
2. Programming style 

Modularity, interfaces, implementations 
Programming by contract 
Multi-file programs using header files 
Protecting header files against accidental multiple inclusion 
Opaque pointers 
Stateless modules 
Abstract data types 
Memory "ownership" 
Preserving invariants 
Testing 
Profiling and instrumentation 
Performance tuning 

 
3.  Number representations 

The binary, octal, and hexadecimal number systems 
Signed vs. unsigned integers 
Binary arithmetic 
Signed-magnitude, one's complement, and two's complement representation 
of negative integers 

 
4.  IA-32 architecture and assembly language 

General computer architecture 
The Von Neumann architecture 
Control unit vs. ALU 
The memory hierarchy:  registers vs. cache vs. memory vs. disk 
Little-endian vs. big-endian byte order 
CISC vs. RISC 
Language levels:  high-level vs. assembly vs. machine 

Assembly language 
Directives (.section, .asciz, .long, etc.) 



Page 3 of 4 

Mnemonics (movl, addl, call, etc.) 
Instruction operands:  immediate, register, memory 
Memory addressing modes 
The stack and local variables 
The stack and function calls 

The C function call convention 
Machine language 

Opcodes 
The ModR/M byte 
Immediate, register, memory, displacement operands 

Assemblers 
The forward reference problem 
Pass 1:  Create symbol table 
Pass 2:  Use symbol table to generate data section, rodata section, bss 
section, text section, relocation records 

Linkers 
Resolution:  Fetch library code 
Relocation:  Use relocation records and symbol table to patch code 

 
5.  Operating systems 

Services provided 
Processes 
The process life-cycle 
Context switches 
Virtual memory 
Computer security 

Buffer overrun attacks 
 
6.  Applications 

De-commenting 
Lexical analysis via finite state automata 
String manipulation 
Symbol tables, linked lists, hash tables 
Dynamically expanding arrays 
Game playing 

Minimax search 
Alpha-beta search 
Incremental game state evaluation 

Spam filters 
Naive Bayesian learning 
Regular expressions 

 
7.  Tools: The UNIX/GNU programming environment 

UNIX, bash, xemacs, gcc, gdb, gdb for assembly language, make, gprof 
 



Page 4 of 4 

Readings 
 
As specified by the course "Schedule" Web page.  Readings from the second half of the 
course are in boldface. 
 
Required: 
 

C Programming (King):  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 
 
The Practice of Programming (Kernighan & Pike):  1, 2, 4, 5, 6, 7 
 
Computer Systems (Bryant & O'Hallaron):  2, 3 
or 
Programming from the Ground Up (Bartlett) 1, 2, 3, 4, 9, 10, B, E, F 
 
Othello (http://www.pressmangames.com/instructions/instruct_othello.html) 

 
Kuperman et al. "Detection and Prevention of Stack Buffer Overflow Attacks." 
Communications of the ACM, Volume 48, Number 11. November 2005 
 
Machine Learning (Mitchell) 6.9, 6.10 
 
Goodman et al. "Stopping Spam." Scientific American. April 2005 

 
Recommended: 

 
Computer Systems (Bryant & O'Hallaron):  1, 5, 7 
 
Programming with GNU Software (Loukides & Oram):  1, 2, 3, 4, 6, 7, 9 

 
Artificial Intelligence (Rich) 12 

 
Programming from the Ground Up (Bartlett) 5, 6, 7, 8, 11, 12, 13, C 

 
 

 
 
 
 
 
 
 
 

Copyright © 2007 by Andrew Appel and Robert M. Dondero, Jr. 
 


