Princeton University
COS 217: Introduction to Programming Systems
Spam Filter Knowledge Module: Mathematical Foundations

First, let's define abbreviations for some logical assertions:

fi: The message contains feature i.

~f5: The message does not contain feature j.
ham: The message is ham.

spam: The message is spam.

We wish to compute:

@
P(ham I fl:---!fm1~fm+11---!~fn)
That is, the probability that the message is ham, given that the message contains some features and does
not contain others.
P(Spam I fla---yfmy~fm+1,---a~fn)
That is, the probability that the message is spam, given that the message contains some features and does
not contain others.
That notation is cumbersome. So let's abbreviate "f.,...,fn, ~fo41s...,~f," as "£f;,...,~f,". So we wish to
compute:

@

PCham | Fi,.-.,~F)

P(spam | f1,---,~TF)

But we don't know how to compute those probabilities. So let's apply some mathematics...

Page 1 of 6

Since the AND operator is commutative:

P(f,,...,~f, AND ham) = P(ham AND f,,...,~f,)
By the multiplicative law of probability, P(x AND y) = P(x) P(y | x).
p(f,,...,~f,) P(ham | £,,...,~f,) = P(ham) P(f;,...,~f, | ham)

Dividing both sides of the equation by P(f,,...,~f,), we get Bayes® Rule:

P(ham | fi,...,~fy) = P(ham) P(f{,...,~f, | ham) / P(f,, ...
Similarly:

P(fy,...,~f, AND spam) = P(spam AND f,,...,~f,)

P(fy,...,~f,) P(spam | f£;,...,~f,) = P(spam) P(f,,...,~f, | spam)

P(spam | f£1,...,~fy) = P(spam) P(fy,...,~f, | spam) / P(f., ...

Substituting for the above expressions, we wish to compute:

And so:

P(ham) P(fi,.--,~f, | ham)

P(f1,--..~Tn)

P(spam) P(fy,....~f, | spam)

P(fi,---,~Tn)

€))

We don't know P(ham) or P(spam), and we never will.
the proportion of our e-mail that is, in fact, spam.

P(f{,...,~f, | ham) and P(f;,...,~f, | spam) would be difficult to compute.
if we have examples of messages that contain (or do not contain)

imply that we need a very large number of examples.

So we must make a simplifying assumption. Let's assume that f,,..

Page 2 of 6

We'll need to guess them,

every combination of features.

., £, are independent.

based upon our perception of

Doing so would be possible only
That would

Then:

y~En) = P(f1) ... P(~Ly)
and
P(fy,...,~f, | ham) = P(f; | ham)...P(~£f, | ham)
P(fy,...,~f, | spam) P(f; | spam)...P(~f, | spam)
Substituting into expressions (3), we wish to compute
PCham) P(f; | ham)...P(~Ff, | ham)
P(f)...P(-Th)

(€))
P(spam) P(f; | spam)...P(~F, | spam)

P(f).-.-P(-T)
We don't know how to compute P(f;) or P(~f;) for any i. So we need to transform the denominators.
Certainly, any message is either ham or spam. So:
P(ham | fi,...,~f,) + P(spam | £f;, o~y =01
After substituting expressions (4) into that equation:
P(ham) P(f; | ham)...P(~f, | ham) P(spam) P(f; | spam) P(~f, | spam)
+ = 1
P(f;)...P(~fn) P(f1)...P(~£f,)
After multiplying both sides of the equation by P(f;)...P(~f,):
P(fy)...P(~f,) = P(ham) P(f; | ham)...P(~f, | ham) + P(spam) P(f; | spam)...P(~f,
Substituting into expressions (4), we wish to compute:

spam)

Page 3 of 6

)
PCham) P(f; | ham)...P(~Ff, | ham)

P(ham) P(f, | ham)...P(~F, | ham) + P(spam) P(f; | spam)...P(~F, | spam)

P(spam) P(f; | spam)...P(~F, | spam)

PCham) P(f; | ham)...P(~F, | ham) + P(spam) P(Ff; | spam)...P(~F, | spam)

As noted previously, the sum of those two expressions is 1. So it would be sufficient to compute only one
of them; we easily could derive the other. So, let's compute only the second expression:

©)
P(spam) P(f; | spam)...P(~F, | spam)

PCham) P(f; | ham)...P(~F, | ham) + P(spam) P(Ff; | spam)...P(~F, | spam)

Note that we can estimate all components of that expression. Specifically, we can estimate:

P (ham) based upon our perception of the proportion of our e-mail that is, in fact, ham.

e P (spam) based upon our perception of the proportion of our e-mail that is, in fact, spam. Note that

P (ham) + P(spam) = 1.

e P(f; | ham) by examining many ham messages, and determining the proportion of them that contain
feature f£f;.

e P(f; | spam) by examining many spam messages, and determining the proportion of them that contain
feature f£f;.

e P(~f; | ham) by examining many ham messages, and determining the proportion of them that do not

contain feature f;. Or we could compute it as 1 - P(f; | ham).
e P(~f; | spam) by examining many spam messages, and determining the proportion of them that do not
contain feature f;. Or we could compute it as 1 - P(f; | spam).

So, in theory, we can use expression (6) to produce the results that we wish.

However, in practice the products may become very small (i.e. close to 0), and thus cause may cause
floating-point underflow. So, relying upon the equality:

Page 4 of 6

x * y = exp(log(x) + log(y))

let's compute sums of logarithms instead of products. That is, we wish to compute:
@
exp(log(P(spam)) + log(P(f, | spam)) + ... + log(P(~F, | spam)))
exp(log(P(ham)) + log(P(f. | ham)) + ... + log(P(~f, | ham))) + exp(log(P(spam)) + log(P(f: | spam)) + ... + log(P(~f, | spam)))
The logarithms will be negative. So the sums of the logarithms may be large negative numbers (i.e. far
from 0). So applying the exp operation to those sums may cause precisely the same floating-point underflow
that motivated us to use logarithms in the first place.
Relying upon this equality:
exp (log(x)) exp (log(x) + k)
exp(log(x)) + exp(log(y)) exp(log(x) + k) + exp(log(y) + k)
let's add some number k to each sum-of-logs before applying the exp operator. So we wish to compute:
(€C))

exp(log(P(spam)) + log(P(f. | spam)) + ... + log(P(=F, | spam)) + k)

exp(log(P(ham)) + log(P(~f. | ham)) +...+ log(P(~f, | ham)) + k) + exp(log(P(spam)) + log(P(f: | spam)) +...+ log(P(~Ff, | spam)) + k)

For k, a good choice would be:

-(log(P(spam)) + log(P(f; | spam)) + ... + log(P(~f, | spam)))
that is,

- log(P(spam)) - log(P(f; | spam)) - ... - log(P(~f, | spam))
It's a good choice because it makes the numerator equal exp(0), that is, 1. It also makes the second term
of the denominator equal exp(0), that is, 1. So, we wish to compute:

Page 5 of 6

€))
1

exp(log(P(ham)) + log(P(f. | ham)) + ... + log(P(~f, | ham)) - log(P(spam)) - log(P(f; | spam)) - ... - log(P(~Ff, | spam))) + 1

Note that only one sum-of-logs remains, and it will not evaluate to a large negative number (i.e. far from

0). So applying the exp operation to that sum will not cause floating-point underflow. Thus we have an
expression that is correct in theory and in practice.

Copyright © 2005 by Robert M. Dondero, Jr.

Page 6 of 6

