
Princeton University
COS 217: Introduction to Programming Systems

GDB Tutorial for Assembly Language Programs (Part 1)

Motivation

Suppose you are developing the power.s program. Further suppose that the program
assembles and links cleanly, but is producing incorrect results at runtime. What can you
do to debug the program?

One approach is temporarily to insert calls of printf(...) or fprintf(stderr, ...) throughout
the code to get a sense of the flow of control and the values of variables at critical points.
That's fine, but often is inconvenient. It is especially inconvenient in assembly language:
the calls of printf() or fprintf() may change the values of registers, and thus may corrupt
the very data that you wish to view.

An alternative is to use gdb. gdb allows you to set breakpoints in your code, step through
your executing program one line at a time, examine the contents of registers and memory
at breakpoints, examine the function call stack, etc.

Building for gdb

To prepare to use gdb, build your program with the -g option:

$ gcc -g power.s -o power

Doing so places extra information into the power file that gdb uses.

Running gdb

The next step is to run gdb. You can run gdb directly from the shell. But it's much
handier to run it from within xemacs. So launch xemacs, with no command-line
arguments:

$ xemacs

Now call the xemacs "gdb" function via these keystrokes:

<Esc key> x gdb <Enter Key> power <Enter key>

At this point you are executing gdb from within xemacs. gdb is displaying its (gdb)
prompt.

Page 1 of 4

Running Your Program

Issue the run command to run the program:

(gdb) run

gdb runs the program to completion, indicating that the "Program exited normally."
Command-line arguments and file redirection can be specified as part of the run
command.

Using Breakpoints

Set a breakpoint near the beginnings of the main function using the break command:

(gdb) break main

Run the program:

(gdb) run

gdb pauses execution immediately after main()'s two-instruction function prolog. It
opens a second window in which it displays your source code, with the about-to-be-
executed line of code highlighted.

Issue the continue command to tell command gdb to continue execution past the
breakpoint:

(gdb) continue

gdb continues past the breakpoint at the beginning of main, and executes the program to
completion.

Stepping through the Program

Run the program again:

(gdb) run

Execution pauses near the beginning of the main() function. Issue the next command to
execute the next instruction of your program:

(gdb) next

Continue issuing the next command repeatedly until the program ends.

The step command is the same as the next command, except that it commands gdb to step
into a called function which you have defined. The step command will not cause gdb to
step into a standard C function.

Page 2 of 4

Examining Registers

Run the program until execution reaches the breakpoint:

(gdb) run

Issue the info registers command to examine the values of the registers:

(gdb) info registers

Issue the print command to examine the value of any particular register, say the EAX
register:

(gdb) print/d $eax

The "/d" syntax commands gdb to print data as a decimal integer. Another common
format is "/a", which commands gdb to print data as a hexadecimal address. Note that
you must precede the name of the register with '$' rather than '%'.

Examining Memory

Issue the print command to print the contents of memory denoted by a label:

(gdb) print/d iBase
(gdb) print/d iPower
(gdb) print/c cPrompt1

The "/c" syntax commands gdb to print the contents of a single byte of memory as an
ASCII character.

Issue the x command to examine memory at a given address:

(gdb) x/d &iBase
(gdb) x/d &iPower
(gdb) x/c &cPrompt1
(gdb) x/s &cPrompt1

The "/s" syntax commands gdb to examine memory as a null-terminated string.

Quitting gdb

Issue the quit command to quit gdb:

(gdb) quit

Then, as usual, type:

<Ctrl-x> <Ctrl-c>

Page 3 of 4

to exit xemacs.

Command Abbreviations

The most commonly used gdb commands have one-letter abbreviations (r, b, c, n, s, p).
Also, pressing the Enter key without typing a command tells gdb to reissue the previous
command.

Copyright © 2006 by Robert M. Dondero, Jr.

Page 4 of 4

