
Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

7.8 Intractability

2

Q. Which algorithms are useful in practice?

A working definition. [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

! Model of computation = deterministic Turing machine.

! Measure running time as a function of input size n.

! Efficient = polynomial time for all inputs.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Properties of Algorithms

Ex 1. Sorting n elements takes n2 steps using insertion sort.

Ex 2. Finding best TSP tour on n elements takes n! steps using exhaustive search.

constants a and b tend to be small

a n
b

3

Exponential Growth

Exponential growth dwarfs technological change.

! Suppose you have a giant parallel computing device…

! With as many processors as electrons in the universe…

! And each processor has power of today's supercomputers…

! And each processor works for the life of the universe…

! Will not help solve 1,000 city TSP problem

via brute force.

quantity

electrons in universe †

supercomputer instructions per second

value

1079

1013

age of universe in seconds † 1017

† estimated

1000! >> 101000 >> 1079 ! 1013 ! 1017

5

Q. Which problems can we solve in practice?

A. Those with poly-time algorithms.

Q. Which problems have poly-time algorithms?

A. No easy answers. Focus of today's lecture.

Properties of Problems

6

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

ILP. Given a system of linear inequalities, find a binary solution.!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

Three Fundamental Problems

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

x
0

= "1

x
1

= 2

x
2

= 2

!

 x
1

+ x
2

" 1

x
0

+ x
2

" 1

x
0

+ x
1

+ x
2

2

!

x
0

= 0

x
1

= 1

x
2

= 1

each xi is either 0 or 1

7

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

ILP. Given a system of linear inequalities, find a binary solution.

Q. Which of these problems have poly-time solutions?

A. No easy answers.

 LSOLVE. Yes. Gaussian elimination solves n-by-n system in n3 time.

 LP. Yes. Celebrated ellipsoid algorithm is poly-time.

 ILP. No poly-time algorithm known or believed to exist!

Three Fundamental Problems

?

"

"

8

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

poly-time in size of instance I

or report none exists

9

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

LSOLVE. Given a system of linear equations, find a solution.

! To check solution S, plug in values and verify each equation.

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

x
0

= "1

x
1

= 2

x
2

= 2

or report none exists

poly-time in size of instance I

instance I solution S

10

!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

LP. Given a system of linear inequalities, find a solution.

! To check solution S, plug in values and verify each inequality.

or report none exists

poly-time in size of instance I

instance I solution S

11

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

ILP. Given a system of linear inequalities, find a binary solution.

! To check solution S, plug in values and verify each inequality

(and check that solution is 0/1).

instance I solution S

or report none exists

!

 x
1

+ x
2

" 1

x
0

+ x
2

" 1

x
0

+ x
1

+ x
2

2

!

x
0

= 0

x
1

= 1

x
2

= 1

poly-time in size of instance I

12

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

FACTOR. Find a nontrivial factor of the integer x.

! To check solution S, long divide 193707721 into 147573952589676412927.

147573952589676412927

or report none exists

poly-time in size of instance I

193707721

instance I solution S

13

Def. NP is the class of all search problems.

Significance. What scientists and engineers aspire to compute feasibly.

8784561

problem description
poly-time
algorithm

instance I solution S

ILP

 (A, b)

Find a binary vector x
that satisfies Ax # b.

???

FACTOR

 (x)

Find a nontrivial factor
of the integer x.

??? 10657

LP
(A, b)

Find a vector x that
satisfies Ax # b.

ellipsoid

LSOLVE
 (A, b)

Find a vector x that
satisfies Ax = b.

Gaussian
elimination

NP

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

x
0

= "1

x
1

= 2

x
2

= 2

!

 x
1

+ x
2

" 1

x
0

+ x
2

" 1

x
0

+ x
1

+ x
2

2

!

x
0

= 0

x
1

= 1

x
2

= 1

!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

slightly non-standard definition

14

P

Def. P is the class of search problems solvable in poly-time.

Significance. What scientists and engineers compute feasibly.

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

problem description poly-time algorithm instance I solution S

LSOLVE
(A, b)

Find a vector x that
satisfies Ax = b.

Gaussian elimination
(Edmonds, 1967)

LP
(A, b)

Find a vector x that
satisfies Ax # b.

ellipsoid
(Khachiyan, 1979)

SORT
(a)

Find permutation that
puts a in ascending order.

mergesort
(von Neumann 1945)

2.3 8.5 1.2

9.1 2.2 0.3
5 2 4 0 1 3

STCONN
(G, s, t)

Find a path from s to t
in digraph G.

depth-first search
(Theseus)

!

x
0

= "1

x
1

= 2

x
2

= 2

!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

slightly non-standard definition

15

Extended Church-Turing Thesis

Extended Church-Turing thesis.

Evidence supporting thesis. True for all physical computers.

Implication. To make future computers more efficient,

suffices to focus on improving implementation of existing designs.

A new law of physics? A constraint on what is possible.

Possible counterexample? Quantum computers.

P = search problems solvable in poly-time in this universe.

16

P vs. NP

17

Automating Creativity

Q. Being creative vs. appreciating creativity?

Ex. Mozart composes a piece of music; our neurons appreciate it.

Ex. Wiles proves a deep theorem; a colleague referees it.

Ex. Boeing designs an efficient airfoil; a simulator verifies it.

Ex. Einstein proposes a theory; an experimentalist validates it.

Computational analog. Does P = NP?

creative ordinary

18

P. Class of search problems solvable in poly-time.

NP. Class of all search problems.

Does P = NP? Can you always avoid brute force searching and do better?

Two worlds.

If yes… Poly-time algorithms for 3-SAT, ILP, TSP, FACTOR, …

If no… Would learn something fundamental about our universe.

Overwhelming consensus. P $ NP.

The Central Question

P $ NP P = NP

EXP
P = NP

NP

P

22

Classifying Problems

23

Literal. A Boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form. An and of clauses.

3-SAT. Given a CNF formula % consisting of k clauses over n variables,

find a satisfying truth assignment (if one exists).

Key application. Electronic design automation (EDA).

A Hard Problem: 3-Satisfiability

!

Cj = x
1

or " x
2

or x
3

!

x
i
 , " x

i

!

" = C
1
and C

2
and C

3
and C

4

!

x1 = true, x2 = true, x3 = false, x4 = trueyes:
!

" = # x
1

or x
2

or x
3() and x

1
or # x

2
or x

3() and # x
1

or # x
2

or # x
3() and # x

1
or # x

2
or x

4()

24

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

Exhaustive Search

"intractable"

25

Classifying Problems

Q. Which search problems are in P?

A. No easy answers (we don't even know whether P = NP).

Goal. Formalize notion:

Problem X is computationally not much harder than problem Y.

27

Def. Problem X reduces to problem Y if you can solve X given:

! A poly number of standard computational steps, plus

! A poly number of calls to a subroutine for solving instances of Y.

Design algorithms. If poly-time algorithm for Y, then one for X too.

Establish intractability. If no poly-time algorithm for X, then none for Y.

Reductions: Consequences

3-SAT your research problem

previously solved problem your research problem

instance I
(of X)

algorithm for X

solution S to I
algorithm

for Y

28

LSOLVE Reduces to LP

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

0x
0

+ 1x
1

+ 1x
2

" 4

0x
0

+ 1x
1

+ 1x
2

4

2x
0

+ 4x
1

$ 2x
2

" 2

2x
0

+ 4x
1

$ 2x
2

2

0x
0

+ 3x
1

+ 15x
2

" 36

0x
0

+ 3x
1

+ 15x
2

36

!

" 0x
0

 + 1x
1
 + 1x

1
 = 4

LSOLVE instance with n variables

corresponding LP instance with n variables and 2n inequalities

29

3-SAT Reduces to ILP

3-SAT. Given a CNF formula %, find a satisfying truth assignment.

ILP. Given a system of linear inequalities, find a binary solution.

!

C1 " 1 # x1

C1 " x2

C1 " x3

C1 $ (1 # x1) + x2 + x3

!

" # C
1

" # C
2

" # C
3

" # C
4

" $ C
1

 + C
2

 + C
3

 + C
4

 % 3

% = 1 iff C
1
 = C

2
 = C

3
 = C

4
 = 1

C
1
 = 1 iff clause 1 is satisfied

corresponding ILP instance with n + k + 1 variables and 4k + k + 1 inequalities

3-SAT instance with n variables, k clauses

!

" = # x
1

or x
2

or x
3() and x

1
or # x

2
or x

3() and # x
1

or # x
2

or # x
3() and # x

1
or # x

2
or x

4()

30

More Reductions From 3-SAT

Dick Karp
'85 Turing award

Conjecture: no poly-time algorithm for 3-SAT.
(and, hence, for none of Karp problems)

3-SAT

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-COLOR

reduces to 3-SAT

TSP

BIN-PACKING

 ILP

31

Still More Reductions from 3-SAT

Aerospace engineering. Optimal mesh partitioning for finite elements.

Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.

Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.

Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer a1, …, an, compute

Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem, integer programming.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Pop culture. Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics. Optimal experimental design.

6,000+ scientific papers per year.

32

NP-completeness

33

NP-Completeness

Q. Why do we believe 3-SAT has no poly-time algorithm?

Def. An NP problem is NP-complete if all problems in NP reduce to it.

Theorem. [Cook 1971] 3-SAT is NP-complete.

Corollary. Poly-time algorithm for 3-SAT & P = NP.

Two worlds.

every NP problem is a 3-SAT problem in disguise

P $ NP P = NP

EXP
P = NP

NP

P NPC

34

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

TSP

BIN-PACKING

 ILP

Cook's Theorem

3-SAT

3-COLOR

reduces to 3-SAT

All NP problems reduce to 3-SAT.

Stephen Cook
'82 Turing award

FACTOR

35

3-SAT

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

TSP

BIN-PACKING

 ILP

Cook + Karp

3-COLOR reduces to 3-SAT

3-SAT reduces to 3-COLOR

All Karp problems are different manifestations
of one "really hard" universal problem.

36

Implications of NP-Completeness

Implication. [3-SAT captures difficulty of whole class NP.]

! Poly-time algorithm for 3-SAT iff P = NP.

! If no poly-time algorithm for some NP problem, then none for 3-SAT.

Remark. Can replace 3-SAT with any of Karp's problems.

Proving a problem intractable guides scientific inquiry.

! 1926: Ising introduces simple model for phase transitions.

! 1944: Onsager finds closed form solution to 2D version in tour de force.

! 19xx: Feynman and other top minds seek 3D solution.

! 2000: 3-SAT reduces to 3D-ISING. a holy grail of statistical mechanics

search for closed formula appears doomed

37

Summary

P. Class of search problems solvable in poly-time.

NP. Class of all search problems, some of which seem wickedly hard.

NP-complete. Hardest problems in NP.

Many fundamental problems are NP-complete.

! TSP, 3-SAT, 3-COLOR, ILP.

! 3D-ISING.

Theory says: we probably can't design efficient algorithms for them.

! You will confront NP-complete problems in your career.

! Identify these situations and proceed accordingly.

