
Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

4.5 Small World Phenomenon

Stanley Milgram Kevin Bacon

2

Small World Phenomenon

Small world phenomenon. Six handshakes away from anyone.

An experiment to quantify effect. [Stanley Milgram, 1960s]

! You are given personal info of another person.

! Goal: deliver message.

! Restriction: can only forward to someone you know by first name.

! Outcome: message delivered with average of 5 intermediaries.

e.g., occupation and age

3

Applications of Small World Phenomenon

Sociology applications.

! Looking for a job.

! Marketing products or ideas.

! Formation and spread of fame and fads.

! Train of thought followed in a conversation.

! Defining representative-ness of political bodies.

! Kevin Bacon game (movies, rock groups, facebook, etc.).

Other applications.

! Electronic circuits.

! Synchronization of neurons.

! Analysis of World Wide Web.

! Design of electrical power grids.

! Modeling of protein interaction networks.

! Phase transitions in coupled Kuramoto oscillators.

! Spread of infectious diseases and computer viruses.

! Evolution of cooperation in multi-player iterated Prisoner's Dilemma.

Reference. Duncan J. Watts, Small Worlds: The Dynamics of Networks
between Order and Randomness, Princeton University Press, 1999.

4

Graph Data Type

Application demands a new data type.

! Graph = data type that represents pairwise connections.

! Vertex = element.

! Edge = connection between two vertices.

A B

F

I

E H

DC

G

vertex

edge

5

Graph Applications

communication

graph

telephones, computers

vertices edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

11

Internet Movie Database

Input format. Movie followed by list of performers, separated by slashes.

http://www.imdb.com/interfaces

% more movies.txt
...

Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara

Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)

Titanic (1997)Paxton, Bill/DiCaprio, Leonardo/.../Winslet, Kate

Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine

To All a Good Night (1980)/George, Michael (II)/.../Gentile, Linda

To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)

To Be or Not to Be (1983)/Brooks, Mel (I)/.../Bancroft, Anne

To Catch a Thief (1955)/París, Manuel/Grant, Cary/.../Kelly, Grace

To Die For (1989)/Bond, Steve (I)/Jones, Duane (I)/.../Maddalena, Julie

To Die For (1995)/Smith, Kurtwood/Kidman, Nicole/.../Tucci, Maria

To Die Standing (1990)/Sacha, Orlando/Anthony, Gerald/.../Rose, Jamie

To End All Wars (2001)/Kimura, Sakae/Ellis, Greg (II)/.../Sutherland, Kiefer

To Kill a Clown (1972)/Alda, Alan/Clavering, Eric/Lamberts, Heath/Danner, Blythe

To Live and Die in L.A. (1985)/McGroarty, Pat/Williams, Donnie/.../Dafoe, Willem

...

12

Internet Movie Database

Q. How to represent the movie-performer relationships?

A. Use a graph.

! Vertex: performer or movie.

! Edge: connect performer to movie.

13

A B

F

I

E H

DC

G

% more tiny.txt
A/B/I

B/A/F

C/D/G/H

D/C

E/F/I

F/B/E/G

G/C/F/H

H/C/G

Graph API

Graph data type.

14

Graph Representation

Graph representation: use a symbol table.

! Key = name of vertex (e.g., performer or movie).

! Value = set of neighbors.

A B

F

I

E H

DC

G

A

B

C

D

E

F

G

H

I

B I

A F

D G H

C

I F

E B G I

C F H

C G

A E F

Key Value

Symbol Table

String SET

15

Set Data Type

Set data type. Unordered collection of distinct keys.

Q. How to implement?

A. Identical to symbol table, but ignore values.

16

Graph Implementation

public class Graph {

 private ST<String, SET<String>> st;

 public Graph() {

 st = new ST<String, SET<String>>();

 }

 public void addEdge(String v, String w) {

 if (!st.contains(v)) addVertex(v);

 if (!st.contains(w)) addVertex(w);

 st.get(v).add(w);

 st.get(w).add(v);

 }

 private void addVertex(String v) {

 st.put(v, new SET<String>());

 }

 public Iterable<String> adjacentTo(String v) {

 return st.get(v);

 }

}

add new vertex v
with no neighbors

add w to v's set of neighbors

add v to w's set of neighbors

17

public Graph(In in) {

 st = new ST<String, SET<String>>();

 while (!in.isEmpty()) {

 String line = in.readLine();

 String[] names = line.split("/");

 for (int i = 1; i < names.length; i++)

 addEdge(names[0], names[i]);

 }

}

Graph Implementation (continued)

Second constructor. To read graph from input stream.

In in = new In("tiny.txt");

Graph G = new Graph(G);

% more tiny.txt
A/B/I

B/A/F

C/D/G/H

D/C

E/F/I

F/B/E/G

G/C/F/H

H/C/G

A B

F

I

E H

DC

G

18

Performer and movie queries.

! Given a performer, find all movies in which they appeared.

! Given a movie, find all performers.

Graph Client Warmup: Movie Finder

public class MovieFinder {

 public static void main(String[] args) {

 In in = new In(args[0]);

 Graph G = new Graph(in);

 while (!StdIn.isEmpty()) {

 String v = StdIn.readLine();

 for (String w : G.adjacentTo(v))

 StdOut.println(v);

 }

 }
}

process queries

read in graph from a file

19

Graph Client Warmup: Movie Finder

% java MovieFinder action.txt

Bacon, Kevin
Death Sentence (2007)

River Wild, The (1994)

Tremors (1990)

Roberts, Julia
Blood Red (1989)

I Love Trouble (1994)

Mexican, The (2001)

Ocean's Eleven (2001)

Tilghman, Shirley

% java MovieFinder mpaa.txt

Bacon, Kevin
Air I Breathe, The (2007)

Air Up There, The (1994)

Animal House (1978)

Apollo 13 (1995)

Balto (1995)

Beauty Shop (2005)

Big Picture, The (1989)

…

Sleepers (1996)

Starting Over (1979)

Stir of Echoes (1999)

Telling Lies in America (1997)

Trapped (2002)

Tremors (1990)

We Married Margo (2000)

Where the Truth Lies (2005)

White Water Summer (1987)

Wild Things (1998)
Woodsman, The (2004)

20

Kevin Bacon Numbers

21

Apollo 13

Sleepless in Seattle

French Kiss

Was in

Kevin Bacon

Tom Hanks

Meg Ryan

 With

Tom Hanks

Kevin Bacon

Meg Ryan

Kevin Kline

Performer

Kevin Bacon Game

Game. Given a performer, find (shortest) chain of movies

connecting them to Kevin Bacon.

22

Computing Bacon Numbers

How to compute. Find shortest path in performer-movie graph.

23

Path Finder API

Path finder API.

Design principles.

! Decouple graph algorithm from graph data type.

! Avoid feature creep.

process graph G with source sPathFinder(Graph G, String s)

public class PathFinder (data type to compute shortest paths)

return shorest distance between s and vdistanceTo(String v)int

print shortest path between s and vshowPath(String v)void

24

Computing Bacon Numbers: Java Implementation

public class Bacon {

 public static void main(String[] args) {

 In in = new In(args[0]);

 Graph G = new Graph(in);

 String s = "Bacon, Kevin";

 PathFinder finder = new PathFinder(G, s);

 while (!StdIn.isEmpty()) {

 String actor = StdIn.readLine();

 finder.showPathFrom(actor);

 }

 }

}

process queries

create object to
return shortest paths

read in the graph from a file

% java Bacon top-grossing.txt

Stallone, Sylvester

Rocky III (1982)

Tamburro, Charles A.

Terminator 2: Judgment Day (1991)

Berkeley, Xander

Apollo 13 (1995)

Bacon, Kevin

% java Bacon top-grossing.txt

Goldberg, Whoopi

Sister Act (1992)

Grodénchik, Max

Apollo 13 (1995)

Bacon, Kevin

Tilghman, Shirley

25

A B

F

I

E H

DC

G

Computing Shortest Paths

To compute shortest paths:

! Source vertex is at distance 0.

! Its neighbors are at distance 1.

! Their remaining neighbors are at distance 2.

! Their remaining neighbors are at distance 3.

! …

0 1

1

2 2 3

26

Breadth First Search

Goal. Given a vertex s, find shortest path to every other vertex v.

Key observation. Vertices are visited in increasing order of

distance from s because we use a FIFO queue.

Put s onto a FIFO queue.

Repeat until the queue is empty:

! dequeue the least recently added vertex v

! add each of v's unvisited neighbors to the queue,

 and mark them as visited.

BFS from source vertex s

27

Breadth First Searcher: Preprocessing

public class PathFinder {

 private ST<String, String> prev = new ST<String, String>();

 private ST<String, Integer> dist = new ST<String, Integer>();

 public PathFinder(Graph G, String s) {

 Queue<String> q = new Queue<String>();

 q.enqueue(s);

 dist.put(s, 0);

 while (!q.isEmpty()) {

 String v = q.dequeue();

 for (String w : G.adjacentTo(v)) {

 if (!dist.contains(w)) {

 q.enqueue(w);

 dist.put(w, 1 + dist.get(v));

 prev.put(w, v);

 }

 }

 }

 }

28

Breadth First Searcher: Printing the Path

To print shortest path: follow prev[] from vertex v back to source s.

! Print v, prev[v], prev[prev[v]], …, s.

! Ex: shortest path from C to A: C – G - F - B - A

symbol tables

public void showPath(String v) {

 while (prev.contains(v)) {

 StdOut.println(v);

 v = prev.get(v);
 }
}

A B

F

I

E H

DC

G

G

FB

null A

-

prev

A

G

C

I

B

F

G

A

0

dist

1

4

5

2

2

3

4

1

A

key

B

C

D

E

F

G

H

I

source

29

Running Time Analysis

Analysis. BFS scales to solve huge problems.

933,864

280,624

139,861

70,325

21,177

performers

39 sec

5.5 sec

2.0 sec

0.72 sec

0.32 sec

BFS

15 sec

2.1 sec

0.72 sec

0.31 sec

0.26 sec

read input

56 sec

7.5 sec

2.8 sec

0.99 sec

0.52 sec

build graph

285,462

21,861

14,938

2,538

1,288

movies

3.3M

610K

270K

100K

28K

edges

0 secall.txt

0 secaction.txt

0 secmpaa.txt

PG13.txt

G.txt

data File

0 sec

0 sec

show

60MB

data as of April 9, 2007

30

Data Analysis

Exercise. Compute histogram of Kevin Bacon numbers.

Input. 285,462 movies, 933,864 actors.

 7,9055

 9036

 1007

 148

111,1494

218,0882

561,1613

!

1

0

Bacon #

 32,294

 2,249

 1

 Frequency

Buzz Mauro, Jessica Drizd, Pablo Capussi

Argentine short film Sweet Dreams (2005)

Fred Ott, solo actor in

Fred Ott Holding a Bird (1894)

data as of April 9, 2007

31

Applications of Breadth First Search

More BFS applications.

! Particle tracking.

! Image processing.

! Crawling the Web.

! Routing Internet packets.

! ...

Extensions. Google maps.

32

Conclusions

Linked list. Ordering of elements.

Binary tree. Hierarchical structure of elements.

Graph. Pairwise connections between elements.

Data structures.

! Queue: linked list.

! Set: binary tree.

! Symbol table: binary tree.

! Graph: symbol table of sets.

! Breadth first searcher: graph + queue + symbol table.

Importance of data structures.

! Enables us to build and debug large programs.

! Enables us to solve large problems efficiently.

